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Abstract

We propose a novel sparsity-based method for cartoon and texture decomposition
based on Convolutional Sparse Coding (CSC). Our method first learns a set of generic fil-
ters that can sparsely represent cartoon and texture type images. Then using these learned
filters, we propose a sparsity-based optimization framework to decompose a given im-
age into cartoon and texture components. By working directly on the whole image, the
proposed image separation algorithm does not need to divide the image into overlapping
patches for leaning local dictionaries. Extensive experiments show that the proposed
method performs favorably compared to state-of-the-art image separation methods.

1 Introduction
In many practical applications such as biomedical imaging, remote sensing, biometrics and
astronomy, images can be modeled as superpositions of cartoon (i.e. piecewise smooth) and
texture structures [11, 20]. For instance, in remote sensing, a synthetic aperture radar image
can be modeled as a superposition of the ground reflectivity field (cartoon) with multiplica-
tive speckle (texture) [2, 14]. Similarly, detecting cracks on concrete structures requires one
to model the image as a superposition of background texture with a crack component [8]. In
these applications, a common task is to separate such an image into two individual images -
one containing the cartoon part and the other containing the texture part.

In recent years, methods based on sparse representation and `1-minimization have been
developed to deal with this problem. In particular, an approach called Morphological Com-
ponent Analysis (MCA) was proposed in [17] for separating different geometrical compo-
nents from a given image under the assumption that an image is the linear mixture of several
morphological components. In this method, it is assumed that different morphological com-
ponents are sufficiently distinct and that each one can be sparsely represented using a specific
dictionary but not in the other ones. The performance of MCA depends on the dictionaries
chosen for representing cartoon and texture components. In practice, dictionaries corre-
sponding to the Discrete Cosine Transform (DCT) or the Discrete Sine Transform (DST)
are used to represent the texture component as their atoms are oscillatory in nature and dic-
tionaries corresponding to wavelet, curvelet, shearlet or contourlet are used to represent the
piecewise smooth component as they represent geometric features such as edges well. The
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Figure 1: An overview of the proposed CSCD method for image separation.

MCA algorithm has been very successful in separating various components in many prac-
tical applications [3, 14, 17, 19]. However, one of the limitations of this approach is that
complicated textures found in many practical applications can not be modeled by DCT or
DST dictionaries. As a result, it tends to produce a poor separation.

It has been observed that learning a dictionary directly from training rather than using
a predetermined dictionary such as DCT or wavelet, usually leads to better representation
and hence can provide improved results in many image processing and classification prob-
lems [1, 7]. One such dictionary learning-based method for image separation was proposed
in [15]. However, this method only learns local dictionaries for the texture component and
uses predetermined global dictionaries such as wavelet or curvet for the cartoon component.
One of the limitations of this method is that it is computationally very expensive and ex-
tremely slow [15]. Furthermore, most dictionary leaning approaches are patch-based and
features learned with these methods often contain shifted versions of the same features [7].
To deal with this issue, Convolutional Sparse Coding (CSC) methods have been introduced
in which shift invariance is directly modeled in the objective [5, 10, 22, 24]. CSC has been
demonstrated to have important applications in a wide range of computer vision and image
processing problems [9, 13, 23].

Motivated by the success of CSC methods in learning adaptive and efficient represen-
tations, we present an image separation method based on CSC. Using multiple cartoon and
texture training images, we first learn the convolutional filters corresponding to these com-
ponents. Then, using the learned filters, we develop an MCA type of algorithm to separate
the texture and cartoon components from a given image. Figure 1 gives an overview of the
proposed Convolutional Sparse Coding-based image Decomposition (CSCD) method.

Rest of the paper is organized as follows. In Section 2, we give a brief background on
sparsity-based image separation and convolutional sparse coding. Details of the proposed
CSCD algorithm are given in Section 3. Experimental results are presented in Section 4 and
Section 5 concludes the paper with a brief summary and discussion.
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2 Background

In this section, we give a brief background on sparsity-based image separation and convolu-
tional sparse coding.
Image Separation. Let y be a lexicographically ordered vector of size N2 corresponding to
an image Y ∈ RN×N . Assume that y is a superposition of two different images

y = yc +yt , (1)

where yc and yt are the cartoon or piecewise smooth component and the texture component
of y, respectively. We assume that yc is sparse in a dictionary represented in a matrix form as
Dc ∈RN2×Mc , and similarly, yt is sparse in a dictionary represented in a matrix form as Dt ∈
RN2×Mt . The dictionaries Dc and Dt are chosen such that they provide sparse representations
of piecewise smooth and texture components, respectively. That is, we assume there are
coefficient vectors xc ∈ RMc and xt ∈ RMt so that yc = Dcxc and yt = Dtxt . The sparsity
assumption means that when the coefficients are ordered in magnitude, they decay rapidly.
Then, one can estimate the components yc and yt via xc and xt by solving the following
optimization problem [17]

x̂c, x̂t = argmin
xc,xt

1
2
‖y−Dcxc−Dtxt‖2

2 +λc‖xc‖1 +λt‖xt‖1 +βTV (Dcxc), (2)

where TV is the total variation (i.e. sum of the absolute variations in the image) and for an N-

dimensional vector x, ‖·‖q denotes the `q-norm, 0 < q < ∞, defined as ‖x‖q =
(
∑N

i=1 |xi|q
) 1

q .
Here, λc,λt and β are positive regularization parameters. The two components are the cor-
responding representations of the two parts and can be obtained by ŷc = Dcx̂c and ŷt = Dt x̂t .
Various methods have been developed in the literature to obtain the solution of (2) [3, 17].

Convolutional Sparse Coding. In CSC, given a set of M training samples {ym}M
i=1, the

objective is to learn a set of convolutional filters {dk}K
i=1 ∈ RP×P by solving the following

optimization problem

argmin
d,x

1
2

M

∑
m=1

∥∥∥∥∥ym−
K

∑
k=1

dk ∗xm,k

∥∥∥∥∥

2

2

+λ
M

∑
m=1

K

∑
k=1

∥∥xm,k
∥∥

1

subject to ‖dk‖2
2 ≤ 1 ∀k ∈ {1, · · · ,K},

(3)

where xm,k ∈RN×N are the sparse coefficients that approximate the data ym when convolved
with the corresponding filters dk of fixed support. Here, ∗ represents the 2-D convolution
operator and λ is a positive regularization parameter. Several methods have been proposed
in the literature for solving the above optimization problem. For instance, [5] introduced
a Fourier domain Alternating Direction Method of Multipliers (ADMM) [4] framework for
solving the CSC problem. In [10], a flexible framework that can tackle proper boundary
conditions was proposed for solving the CSC optimization problem. More recently, [22],
[21] developed an efficient method that jointly uses the space and Fourier domains to solve
the CSC problem. In this paper, we adapt the method proposed in [22] for learning the
convolutional filters due to its simplicity and efficiency.
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3 Proposed Approach
Following the mixture model in (1), given y our goal is to separate it into yc and yt . Assume
that we have already learned the convolutional filters corresponding to yc and yt by solving
the CSC problem (3) for the cartoon and the texture components separately. That is, we have
learned {dc,k}Kc

k=1 and {dt,k}Kt
k=1 such that yc = ∑Kc

k=1 dc,k ∗xc,k and yt = ∑Kt
k=1 dt,k ∗xt,k, where

xc,k and xt,k are the sparse coefficients that approximate yc and yt when convolved with the
filters dc,k and dt,k, respectively. We propose to estimate yc and yt via xc,k and xt,k by solving
the following CSC-based optimization problem

x̂c,k, x̂t,k = arg min
xc,k,xt,k

1
2

∥∥∥∥∥y−
Kc

∑
k=1

dc,k ∗xc,k−
Kt

∑
k=1

dt,k ∗xt,k

∥∥∥∥∥

2

2

+λc

Kc

∑
k=1

∥∥xc,k
∥∥

1

+λt

Kt

∑
k=1

∥∥xt,k
∥∥

1 +βTV

(
Kc

∑
k=1

dc,k ∗xc,k

)
.

(4)

Once, xc,k and xt,k are estimated, the two components can be obtained by ŷc =∑Kc
k=1 dc,k ∗ x̂c,k

and ŷt = ∑Kt
k=1 dt,k ∗ x̂t,k.

3.1 Optimization
For simplicity we discard the TV part in (4) for the discussion given here. The resulting
optimization problem can be solved iteratively over xc,k and xt,k.
Update step for xc,k. In this step, we assume that xt,k is fixed. As a result, the following
problem needs to be solved

x̂c,k = argmin
xc,k

1
2

∥∥∥∥∥y−
Kc

∑
k=1

dc,k ∗xc,k−
Kt

∑
k=1

dt,k ∗xt,k

∥∥∥∥∥

2

2

+λc

Kc

∑
k=1

∥∥xc,k
∥∥

1 . (5)

Since, xt,k,dt,k and dc,k are fixed, (5) is essentially a sparse coding problem which can be
solved using the DFT-based ADMM algorithm presented in [21].

Update step for xt,k. For a fixed xc,k, we have to solve the following problem to obtain xt,k

x̂t,k = argmin
xt,k

1
2

∥∥∥∥∥y−
Kc

∑
k=1

dc,k ∗xc,k−
Kt

∑
k=1

dt,k ∗xt,k

∥∥∥∥∥

2

2

+λt

Kt

∑
k=1

∥∥xt,k
∥∥

1 . (6)

Again, this problem can be solved using the ADMM method presented in [21].

TV correction. Once the sparse coefficients have been estimated, we apply the TV correc-
tion on the recovered cartoon component. We replace the TV correction term by a redundant
Haar wavelet-based shrinkage estimate as this seems to give the best results. The shrinkage
is applied as follows

ŷc = HSβ

(
HT

(
Kc

∑
k=1

dc,k ∗ x̂c,k

))
, (7)

where Sβ (x) = sign(x)(|x|−β )+ is the element-wise soft-thresholding operator with thresh-
old β . This adjustment is applied only to the piecewise smooth component to control the
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Algorithm 1: The CSCD Algorithm for Image Decomposition.

1 Input: {dc,k}Kc
k=1, {dt,k}Kt

k=1, y, λc, λt , L
2 Initialization
3 for i = 1 : L
4 Obtain x̂c,k by solving (5).
5 Obtain yc by applying the Haar threshold in (7).
6 Use yc to replace ∑Kc

k=1 dc,k ∗ x̂c,k in (6).
7 Obtain x̂t,k by solving (6).
8 end for
9 ŷc=yc;

10 ŷt = ∑
Kl,t
k=1 dt,k ∗ x̂t,k,

11 Output: ŷc, ŷt

ringing artifacts near the edges caused by the oscillations of the atoms in the dictionary
{dc,k}Kc

k=1. So the edges and contours are better kept in the cartoon part and highly oscilla-
tory cannot be captured by the TV correction. The same adjustment was used in [16, 17]
and the substitution was partially motivated by observing the connection between TV and
the Haar wavelet given in [18].

The overall CSCD algorithm is summarized in the Algorithm 1. Here, λc and λt are
the changing parameters corresponding to the two parts, L is the total iteration number, y is
the input image to be separated and ŷc and ŷt are the estimated cartoon component and the
texture component, respectively. The Haar shrinkage value β in (7) is 3σyc , where σyc is the
standard deviation of the noise estimated using a median estimator on the finest scale of the
Haar wavelet coefficients of ∑Kc

k=1 dc,k ∗ x̂c,k [6].

4 Experimental Results
In this section, we present the results of our proposed CSCD algorithm for image separation
and compare them with the sparsity-based MCA method [17], adaptive dictionary lending-
based MCA (A-MCA) method [15], and a recent stat-of-the-art Block Nuclear Norm (BNN)
based image separation method [12]. In these experiments, we use the Peak Signal to Noise
Ratio (PSNR) to measure the performance of the routines tested. For the MCA method,
wavelet and local DCT dictionaries are used to represent the cartoon and the texture com-
ponents, respectively. For the A-MCA method, we use a curvelet dictionary for sparsely
representing the cartoon component and learn a local patch-based texture dictionary using
the images shown in Figures 2 (a) to represent the texture component.

Training images shown in Figures 2 (a) and Figure 2 (b) are used to learn the convolu-
tion filters {dt,k}Kt

k=1, {dc,k}Kc
k=1, respectively using the CSC method proposed in [22]. The

corresponding learned filters are shown in Figures 2 (c) and Figures 2 (d) for the texture and
the cartoon components, respectively. From Figures 2 (c), one can see that these filters are
oscillatory in nature and they do a good job in capturing the patterns of the training textures
(Figures 2 (a)). Similarly, from Figures 2 (d), we observe that the learned filters look similar
to those found in a Gabor dictionary. Also, they capture domain specific information found
in cartoon type images such as edges.

Figures 3 and 4 show the original images and the decomposed images corresponding
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(a)

(b)

(c) (d)

Figure 2: (a) Training texture images used for learning a set of texture filters {dt,k}Kt
k=1. (b) Training

cartoon images used for learning a set of cartoon filters {dc,k}Kc
k=1. (c) Learned texture filters {dt,k}Kt

k=1.
(d) Learned cartoon filters {dc,k}Kc

k=1.

to different methods. All the test images were excluded from the images used to learn the
convolution filters. All the parameters are empirically determined. We fix λt = max(0.55−
0.05∗ i,0.005) and λc = max(0.55−0.05∗ i,0.005) during the ith iteration for the following
two cases. In both of these figures, the first column shows the original test image, original
cartoon image and original texture image. Second column shows the results corresponding
to our CSCD method. Third, fourth and fifth columns show the results corresponding to the
BNN, MCA and A-MCA methods, respectively.

As can be seen from these figures, our method is able to separate the morphological com-
ponents from the given images better than the other methods. In particular, experiments with
the Tiger+Texture image shown in Figure 3, our method achieves the PSNR of 29.04 dB on
the separated cartoon component compared to the PSNRs of 28.50, 27.80 and 28.70 corre-
sponding to BNN, MCA and A-MCA methods, respectively. Similarly, our method obtains
the PSNR of 28.16 dB for the texture component compared to the PSNRs of 27.06, 27.81
and 27.92 corresponding to BNN, MCA and A-MCA methods, respectively. Overall, our
method achieves the PSNR of 42.79 dB when the two estimated components are combined
compared to the PSNRs of 30.34 dB, 33.27 dB and 29.20 dB for the BNN, MCA and A-
MCA methods, respectively. Similar PSNR performances are also observed in Figure 4 with
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BNN All
(PSNR: 30.34)

MCA All
(PSNR: 33.27)

A-MCA All
(PSNR: 29.20)

Original Cartoon
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CSCD Cartoon
(PSNR: 29.04)

BNN Cartoon
(PSNR: 28.50)

MCA Cartoon
(PSNR: 27.80)

A-MCA Cartoon
(PSNR: 28.70)

Original Texture
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CSCD Texture
(PSNR: 28.16)

BNN Texture
(PSNR:27.06)

MCA Texture
(PSNR:27.81)

A-MCA Texture
(PSNR:27.92)

Figure 3: Image decomposition results on the Tiger+Texture image. We compare the performance of
our method with that of BNN, MCA and A-MCA.

the experiments on the Cat+Cage image. These results clearly indicate that an improvement
is achieved when a convolutional sparse coding method is used to separate morphological
components of an image as can be seen by comparing the visual as well as PSNR results of
our method with that of MCA, A-MCA and BNN in Figures 3 and 4.

Using the Tiger+Texture and Cat+Cage images, in Figure 5, we show the evolution of
the objective function. Note that in Figure 5, the relative error decreases significantly after a
few iterations and saturates around the sixth iteration, showing that the proposed method is
efficient and requires less number of iterations compared to converge.

In the last set of experiments, we present an application of the proposed CSCD method in
extracting the underlying fingerprint from a latent fingerprint. Latent fingerprints are among
the most valuable and common types of physical evidence. Latent fingerprints obtained from
crime scenes can be used as crucial evidence in forensic identification. However, matching
latent fingerprints with the enrolled fingerprints is a difficult problem as latent fingerprints
are often of poor quality with tiny outlets. In this experiment, we show that one can use the
proposed CSCD method to extract the underlying fingerprint from a latent fingerprint, which
can be then matched with the enrolled fingerprints. In this experiment, we only present the
separation results as the matching of latent fingerprints is beyond the scope of this paper.
We use the same learned cartoon filters as used in the previous experiments. However, we
learn the texture filters corresponding to fingerprints, from a set of clean fingerprints. In this
experiment, we set λt = max(0.5−0.05∗ k,0.15) and λc = max(0.55−0.05∗ k,0.05).

The first row of Figure 6 shows the input latent fingerprint and the learned texture (finger-
print) filters. The learned fingerprint filters show some characteristics unique to fingerprints.
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Original Test
Image

CSCD All
(PSNR: 39.03)

BNN All
(PSNR: 33.15)

MCA All
(PSNR: 32.81)

A-MCA All
(PSNR: 29.70)

Original Cartoon
Image

CSCD Cartoon
(PSNR: 29.02)

BNN Cartoon
(PSNR: 28.04)

MCA Cartoon
(PSNR: 26.82)

A-MCA Cartoon
(PSNR: 27.80)

Original Texture
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CSCD Texture
(PSNR: 28.27)

BNN Texture
(PSNR:26.24)

MCA Texture
(PSNR:26.40)

A-MCA Texture
(PSNR:26.63)

Figure 4: Image decomposition results on the Cat+Cage image. We compare the performance of our
method with that of BNN, MCA and A-MCA.
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Figure 5: The objective function value as a function of iteration number for the experiments with the
Tiger+Texture and Cat+Cage images.

In the second row of this figure, we show the results of image separation corresponding to
different methods. It can be seen from this figure that our method is able to extract the un-
derlying structure of the fingerprint better than MCA and A-MCA. This can also be seen by
comparing the binarized extracted delta and whorl patterns in the last two rows of this figure.
It is interesting to see that if the cartoon part is piecewise smooth, then our method and BNN
can recover the shape of the fingerprint better than MCA since it uses local DCT to represent
the texture component. Furthermore, as can be seen from the results of A-MCA, learning
a local dictionary to represent the fingerprint textures does not produce good results. This
experiment clearly shows the significance of our method compared to MCA and A-MCA
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Original Image Fingerprint Filters
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Figure 6: Fingerprint separation results. We compare the visual performance of our method with that
of BNN, MCA and A-MCA based om recovered Whor and Delta part.

that use fixed and patch-based adaptive dictionaries, respectively.

5 Conclusion
In this paper, we presented a CSC-based image separation method for decomposing a given
image into a texture and a cartoon component. Our method entails learning cartoon and
texture filters directly from training examples. Using these learned filters, we proposed a
sparsity-based optimization framework for image separation. Various experiments showed
the significance of our CSC-based image separation method over the sparse representation-
based methods that use global dictionaries and patch-based methods that use local dictionar-
ies for image separation.

In the future, we will apply the proposed image separation method on various computer
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vision problems such as intrinsic image estimation and albedo estimation that require sepa-
rating a specific component from a given image.
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