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1 Depth Face Image Recovery and Enhancement

1.1 Problem analysis
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Figure 1: Simple sketch of Kinect (a), and Kinect v.2 (b).
Ilustration of photographing a face (c).

All the major causes of artefacts are summarized as follows:

1.  Occlusion/Shadow: A surface whose incoming or reflection ray path is occluded
will lose its depth information. (Fig. 2(a))

2. Absorption: The IR ray is almost absorbed, which results in weak reflection and
missing depth. (Fig. 2(a))

3. Visible Specular: If the major composition of reflection is specular reflection, and
can be captured by IR sensor, the pixels may result in severe depth error.
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Invisible Specular: Diffuse is weak, so the pixels will lose its depth. (Fig. 2(b))
Indirect Reflection: It causes severe depth error, too. (Fig. 2(b))

Gaussian Noise: Captured depth of an ordinary pixel jitters with a slight error of a
Gaussian-like distribution. (Fig. 2(b))

Interference: Another IR light source, such as sunlight or fluorescent lamp,
interferes IR of Kinect, which results in severe artefacts. (Fig. 2(d))

Rolling Shutter: Asynchronous sensing results in distortion for moving objects.
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Figure 2: Illustration of all major causes of depth artefact and noise
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Figure 3: Problem, derivative defect, and solution flowchart for each defect
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1.2 Implementation Details

Algorithm 1 contains the implementation details of 3-D face model reconstruction.

Algorithm 1. Forward Bilinear Interpolation with Depth-Buffering

* Input: 3-D point cloud (x;, v;,2;)
* Output : Rendered depth map D

1. Initialize depth map D, weight map W, and depth-buffer B as zeroes
2. Define depth-threshold 74 as 2 (millimeters)
3. Transform 3-D points (x;, ¥;, z;) to depth vectors (u;, v;,d;)
4. Sort depth vectors by their depth (d) in ascending order
5. For each depth vector (u;, v;,d;)
6. For 4 nearest grid coordinates g?), j=1,23,4
7. if B (ggf)) =0:B (ggf)) = d; , jump to 10. (First Filling)
8. elseif d; < B (g?)) + T4 : jump to 10, (Merging)
9. elseif di > B (glg)) + 74 : jump to 11. (Neglecting)
10. w(g")+=w?, D(g")+=w" xq;
, where wt.(j ) is bilinear weighting coefficient
11 End For
12.  End For

13.  For each pixel (m,n) in D and W : D(m,n) = D(m,n) + W(m,n)
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Figure 4: Example of color face alignment.
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2 Distinguish Power on Images with Defects
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Figure 5: Example of each artificial image defect setting
(@) original, (b) defect-1, and (c) defect-2
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Figure 6: (1) Error rate / Accuracy — Similarity threshold chart,
(2) Histogram of estimated similarity (in different colours according to ground truth)
(3) mean and standard deviation of estimated similarity
on LFW validation set with proposed network and Joint Bayesian classifier
with artificial image defect settings (a) Original (b) Defect-1 (c) Defect-2
Purple bins are ground-truth different-subject pairs, Yellow bins are same-subject-pairs
Red lines are FAR curve. Blue lines are FRR curves. Green lines are accuracy curves.

In order to understand the impacts caused by low image quality, 3 artificial image defect
settings are tested. Our artificial image defect by applying Gaussian noise of -20 dBW to
an image and halving its brightness can lower the image quality. Defect-1 means for each
pair, one of the images is with such a defect. (see Figure 30) Defect-2 means the quality of
both images in each pair are reduced.
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Similarity | Within-class: Within-class :
Statistics | Same-subject pairs Different-subject pairs | Accuracy
at EER
mean std mean std

Original 0.7785 0.0743 0.4523 0.0540 98.1%
Defect-1 0.6539 0.0470 0.4612 0.0359 97.8%
Defect-2 0.5816 0.0347 0.4673 0.0291 96.7%

Table 1: Similarity statistics of each artificial defect settings

3 Data Preparation

3.1 Color Datasets
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Figure 7: Examples of aligned face images of CASIA-WebFace dataset

For each class (subject) S;, we take 3 images for testing, and the others for training. For
each class (subject) S; with N(S;) face images before augmentation, our goal is to sample
Niarger (Si) = max(200, (20N(S)*%)) training images for same-subject pairs, and
another Niqrge¢ (S;) images (may be duplicated with those images for same-subject pairs)
for different-subject pairs, by the following algorithm.

Algorithm 2. Asymmetric Augmentation and Sampling

1. For each class (subject) S; with N(S;) face images

2 Niarget (S;) is the target image number to sample

3 if Ntarget (5)) < N(S;),jumpto 8

4 else 'f SNtarget(S:') = N(S:') < Ntarget(si) _]lep to7

3. else : jumpto 6

6 Apply augmentation : multiple-cropping

7 Apply augmentation : scale jittering

8 Apply augmentation : mirroring

9. Randomly sample Nygrger (S;) images from the augmented images
10. End For
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To generate same-subject pair list To generate different-subject pair list
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Figure 8: Illustration of the 2nd step of (a) same-subject pair list and

|

(b) different-subject pair list generation

Besides, any image which is not sampled for same-subject pairs has higher priority to be
sampled for different-subject pairs. For same-subject pairs, all the sampled images of each
subject form a pool. For different-subject pairs, merging sampled images from all the
subjects forms a big different-subject-pool.

To generate same-subject pair list for each subject, we randomly permute all the images in
the pool and divide them into bipartite list first. Any pair with 2 image crops from the same
image before augmentation is considered as illegal and need correcting. Next, we swap one
of the image of each illegal pair with another (random) image in the list recursively, until
there is no illegal pair. Please reference to Fig. 8(a) for better comprehension.

To generate different-subject pair list, we randomly permute all the images in the different-
subject-pool first. Any pair with 2 image crops from the same subject is considered as
illegal. Next, we correct it by swapping one of the image of each illegal pair with another
(random) image in the list recursively, until there is no illegal pair. (Fig. 8(b)).

Last but not least, we merge and shuffle images in same-subject pair list and
different-subject pair list, for better diversity within a mini-batch.
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3.2 Depth / RGB-D Datasets

There is no single low quality (e.g. Kinect) depth face dataset which is large enough for
our deep network, even with transfer learning, to learn a good model. For learning and
evaluation, 5 depth datasets are considered. iiR3D, GavabDB: a 3D face database, Texas
3D Face Recognition Database, Eurocom Kinect Face Dataset(EKFD), Florence
SuperFaces.

Since the quality of 3-D information in iiR3D, GavabDB, and Texas 3D Face Recognition
Database is s better, our training dataset for learning deep representation is generated by
merging these 3 datasets together. The rest 2 datasets, EKFD and SuperFaces, which are
relatively small, are for evaluation.

iiIR3D Dataset Texas 3D Face Recognition Database

Session 3

Session 1 Session 2 Session 1 Session 2
(a) (b)

Figure 9: Visualization of example data from (a) iiR3D (3-D model) Dataset, and
(b) Texas 3D Face Recognition (well aligned depth map) Database
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Figure 10: Visualization of example data from GavabDB (3-D model) Dataset
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Eurocom Kinect Face Dataset(EKFD)
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Figure 11: Example data from EKFD

Florence Superface Dataset
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Figure 12: Visualization of sampling data from SuperFaces Dataset
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Figure 13: Example of one subject of our dataset

4 Implementation Details

4.1 Solver Parameter Configuration

Our training procedure containing 2 phases. When we start training from scratch, we
are in phase 1, loss values and identification accuracy are recorded every epoch, and
learning rate s, keeps constant. Once we find our model converged, we switch to phase
2, in which our learning rate policy is “step”, that is, with base learning rate 72,,,, Step size
s and step ratio vy, learning rate at iteration t is given by:

Empirically, we set i, = 0.01, 1i%,,, = 0.001, s = 10 epochs, and y= 0.1 for best

t
n= rbzase X YUSJ

(11)

performance. To optimizing our deep network, we use basic SGD (stochastic gradient
descent) solver, with momentum = 0.9 and weight decay = 0.0005.

4.2 Network Details

Layer Name | Filter Size / Padding | Output Shape | Number of Parameters
Data - 128x128x%3(1)
Conv 1A 5x5/2 128x128x56 4.2(1.4)K
Conv 1B 3x3/1 128x128x48 24K
Conv ZA 3x3/1 64%64x72 3IK
Conv2B 3x3/1 64%64%64 41K
Conv 3A 3x3/1 32x32x96 55K
Conv 3B 3x3/1 32x32x80 69K
Conv 4A 3x3/1 16x16x160 115K
Conv 4B x3/1 16x16x120 173K
Conv 5A 3x3/1 8x8x240 259K
Conv 5B 3x3/1 6Xx6x200 432K
Conv 6A 3x3/0 2x2x320 576K
Conv 6B 2x2/0 1x1x320 410K
Full 1x10575 3384K
Connection (1x266) (85k)
Total (color image) 5.20M
Total (depth image) 1.90M

Table 2: Detail of each layer (excluding loss modules) in the proposed network



