
: 1

Fast Feature-Less Quaternion-based Particle
Swarm Optimization for Object Pose
Estimation From RGB-D Images

Giorgio Toscana
giorgio.toscana@polito.it

Stefano Rosa
stefano.rosa@polito.it

Politecnico di Torino, Turin, Italy

Abstract

We present a novel quaternion-based formulation of Particle Swarm Optimization for
pose estimation which, differently from other approaches, does not rely on image features
or machine learning. The quaternion formulation avoids the gimbal lock problem, and
the objective function is based on raw 2D depth information only, under the assumption
that the object region is segmented from the background. This makes the algorithm suit-
able for pose estimation of objects with large variety in appearance, from lack of texture
to strong textures, for the task of robotic grasping. We find candidate object regions
using a graph-based image segmentation approach that integrates color and depth infor-
mation, but the PSO is agnostic to the segmentation algorithm used. The algorithm is
implemented on GPU, and the nature of the objective function allows high paralleliza-
tion. We test the approach on different publicly available RGB-D object datasets, discuss
the results and compare them with other existing methods.

1 Introduction
Detection and pose estimation of 3D objects is of great importance in robotics applications
for many high level tasks such as manipulation, grasping, and also localization and mapping.
Affordable depth sensors, like the Kinect, have been of great interest to the robotics commu-
nity. These new sensors are able to simultaneously capture high-resolution color and depth
images at high frame rates (RGB-D images). We focus on the problem of object detection for
robotic grasping, and in particular we are most interested in the Amazon Picking Challenge
(APC)[1] scenario.

A well known approach is LINEMOD [9]. It exploits both depth and color images to
capture the appearance and 3D shape of the object using a set of templates covering different
views of an object. Since the viewpoint of each template is known, a coarse estimate of the
object pose is available upon detection. Templates are learned online, and the pose estimates
are not very precise, since a template covers a range of views around its viewpoint. 3D
object models were exploited [10], improving the accuracy of pose estimation and lowering
false positives. In [16] LINEMOD is adapted to be a scale-invariant patch descriptor and
integrated into a regression forest, trained with positive samples only. Tests of LINEMOD

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 113.1-113.11

DOI: https://dx.doi.org/10.5244/C.30.113

https://dx.doi.org/10.5244/C.30.113

2 :

showed only 32% accuracy in an APC-like scenario [14]. In [11] the approach is extended
with a voting procedure based on hashing for selecting candidate templates. [7] is based on
training random forests with local features, while in [6] occlusion information is also added
in the learning phase.

Other commonly used approaches, such as tabletop from the Point Cloud Library [4],
are based on a combination of coarse detection using 3D feature descriptors and fine pose
estimation using ICP. Some of these approaches rely on object textures and are not suitable
for many common texture-less objects. Moreover, all these methods are limited to objects
lying on a flat tabletop, and are generally not robust to occlusions.

We propose a pose estimation algorithm for simple objects which does not rely on 2D
or 3D features and does not require any training phase. Given a candidate object segmented
from the RGB-D image, the object’s pose is estimated using Particle Swarm Optimization
(PSO). The contributions of this work are a novel quaternion-based formulation of the stan-
dard PSO equations, the design of an objective function for pose estimation which exploits
depth information only and a fast GPU implementation. A number of GPU implementations
of PSO have been proposed (e.g., [18], [5], [8]). They all consider different types of par-
ticles’ topology. Our own GPU implementation is loosely based upon [18], [5] and [8] as
explained in Section 4.

In Section 2 we introduce the problem; in Section 3 we describe the pose estimation
part; in Section 4 we explain the GPU implementation in detail; in Section 5 we present and
discuss experimental results and finally in Section 6 we draw conclusions and discuss future
work.

2 Background
Particle Swarm Optimization (PSO) [12] is an heuristic technique inspired by the swarming
or collaborative behavior of biological populations. It is useful for exploring the search space
of a problem to find the settings or parameters required to maximize a particular objective.
A set of candidate solutions (particles) pi(t) = (xi(t),vi(t)), where xi and vi are the position
and velocity of particle i at time t, is maintained in the search space. The algorithm consists
of three steps, which are repeated until some stopping condition is met: first, the fitness of
each particle is evaluated, then individual and global best fitnesses and positions are updated;
finally velocity and position are updated for each particle. In the update phase the velocity is
computed as follows:

vi(t +1) = wvi(t)+ c1r1[xpbest(t)−xi(t)]+ c2r2[xgbest(t)−xi(t)], (1)

where w,c1,c2 (with 0 ≤ w ≤ 1.2, 0 ≤ c1 ≤ 2, 0 ≤ c2 ≤ 2) are tunable parameters; r1,r2
are random values. xpbest(t) is the best candidate solution for the particle pi at time t and
xgbest(t) is the global best candidate solution at time t. The particle position is then computed
as:

xi(t +1) = xi(t)+vi(t +1). (2)

3 Pose estimation
To estimate the 6DoF object pose we use a quaternion-based formulation of the standard
PSO equations (1) and (2). We use unitary quaternions to describe the orientation of an ob-
ject in 3D space since they are gimbal-lock free and they have a well-defined interpolation

: 3

formula (SLERP) [15]. Gimbal-lock would produce wrong results when the fitness function
of a particle is computed; moreover, other rotation formalisms would require the conversion
to and from rotation matrix form at each step. Unitary quaternions, however, turn the opti-
mization problem into a constrained one. We design the new PSO equations such that the
explored orientations are always represented by unit-length quaternions. This means that
every particle, in every time instant, holds a valid object pose hypothesis. For now on, when
we talk about quaternions we refer to unit-length quaternions. Both quaternions q = [q0,~q]
and -q ∈ S3 define the same orientation. To overcome this ambiguity we cast the quaternion
to the northern hemisphere of S3, i.e., we ensure that the scalar part of a quaternion is always
positive or equal to zero (q0 ≥ 0) .

3.1 Angular velocity and orientation update
The standard velocity update equation (1) describes a weighted sum of three vectors in Eu-
clidean space. The current linear velocity of an object is expressed by the vector wvi(t).
The object cognitive linear velocity is given by vector c1r1

[
xpbest(t)−xi(t)

]
and the social

linear velocity acting on an object is c2r2
[
xgbest(t)−xi(t)

]
. This, along with (2), is used to

optimize the position component of the object pose. In (1) velocities are computed as the
difference between two position vectors. Subtraction has no meaning for unit-length quater-
nions so a new equation must be derived to obtain the object’s angular velocity based on the
current and best orientations of an object. The goal is to obtain both the cognitive and social
angular velocity effecting an object, through the quaternion inverse displacement.

Let q0, q1 ∈ S3 and t ∈ R with 0≤ t ≤ 1, the SLERP and its derivative are defined as:

Slerp(q0,q1, t) = q(t) =(q1 ?q∗0)
t ?q0 (3)

dSlerp
dt

= q̇(t) =Log(q1 ?q∗0)(q1 ?q∗0)
t ?q0 =

=Log(q1 ?q∗0)?q(t), (4)

where the superscript ∗ is the quaternion conjugate operator, the symbol ? defines the
quaternion product and the Log operator is the logarithmic map. From the quaternion kine-
matics we can write the derivative of q in t as:

q̇(t) =
1
2

q(t)?ω(t), (5)

where ω(t) is the instantaneous angular velocity vector acting on the object. In (5), ω(t) is
the augmented angular velocity with scalar part equal to zero, i.e., ω(t) = [0, ωx, ωy, ωz]

T .
The instantaneous angular velocity needed to rotate the object from the initial orientation
(q0) to the final one (q1) is obtained combining (5) and (4):

ω(t) = 2Log(q1 ?q∗0) (6)

Eq. (6) shows how the angular velocity remains constant throughout the quaternion inter-
polation since its value only depends on the quaterion error (q1 ?q∗0). Moreover, we are
dealing with quaternions belonging only to the northern hemisphere of S3. This aspect en-
sures that the SLERP represents the shortest arc between q0, q1. Hence, the obtained angular
velocity is the optimal one. The logarithmic map for a unit-length quaternion reduces to:

Log(q) =
[

0,
~q
‖~q ‖ arccos(q0)

]
(7)

4 :

Eq. (6) can now be rewritten as:

ω̃ = 2
~̃q
‖ ~̃q ‖

arccos(q̃0) (8)

where q̃ = q1 ?q∗0 = [q̃0,~̃q]. The angular velocity update equation for the i-th particle is
formulated as follows:

ω i (t +1) = wω i(t)+

c1r1
[
2Log

(
qpbesti(t)?q∗currenti(t)

)]
+

c2r2
[
2Log

(
qgbest(t)?q∗currenti(t)

)]
(9)

The orientation of the i-th particle is then updated by means of the discrete form of the
quaternion kinematics:

qi (t +1) = cos(ψ(t))qi(t)+
1
2

sin(ψ(t))
ψ(t)

qi(t)?ω i(t +1)Tc,ψ(t) = ‖ω i(t +1)‖2
Tc

2
(10)

Tc represents the integration time of the discrete time quaternion kinematics. In this work
Tc just collapses to a tunable parameter as we are dealing with iteration steps (t) rather than
with the true definition of time. This new parameter could be employed to scale the total
angular velocity obtained in (9). In this way, Tc can control the amount of perturbation to
apply to the current object orientation.

3.2 Objective function

Each particles’ object pose hypothesis must be checked against a fitness function to estimate
how close that particle is from the true pose of the real object. The algorithm takes as inputs
a set of regionsR generated by a segmentation algorithm; each one is a cluster of pixels that
represents an object. The depth map of that cluster is also extracted and it is the only source
of information used in the PSO algorithm. In our work we use the graph-based RGB-D
segmentation algorithm described in [17]. The segmentation algorithm also does not rely on
image features nor machine learning and uses a modified Canny edge detector for extracting
robust edges by combining depth and color cues. The edges are used to build an undirected
graph, which is partitioned using the concept of internal and external differences between
graph regions.

Each particle renders its pose hypothesis against the depth map of the cluster. The fitness
value of the j-th particle is thus computed as follows:

Φ j =
α

NR j

NR j

∑
i=1

(
zKi − zRi j

)2
+β

µ j +κ j

2
(11)

where: NR j is the number of pixels of the depth map rendered by the j-th particle, zRi j is
the depth value of the pixel i rendered by the j-th particle, while zKi is the corresponding
depth value of the cluster at pixel i. α and β are two constant parameters used to weight
the two terms of the fitness function. In the fitness function, a second term along with the
depth error one is needed. Depth error alone might generate ambiguity, leading to wrong
pose estimation in some special cases (e.g., a box could fit one of its smaller sides against
its largest size that is visible in the segmented cluster, giving a depth error close to zero even

: 5

if the particle’s pose is wrong). The term µ j models the percentage of cluster pixels that are
not covered by the rendered 3D model of particle j:

µ j =
NCW j

NPC
∈ [0,1] . If µ j =

{
0 perfect match
1 the rendered object is outside the cluster

where NCW j is the cluster’s area (in pixels) that is not covered by any pixel of the rendered
object of the particle j and NPC is the area of the segmented cluster. The condition µ j = 0
could also hold when the rendered object has a larger area than the cluster and it is covering
the entire cluster. Hence, the term κ j is added to compensate for this problem.
κ j is the complement of µ j i.e., it gives the percentage of rendered pixels of particle j that
are not covered by valid depth values in the cluster depth map:

κ j =
NRW

NR j

∈ [0,1] . If κ j =

{
0 perfect match
1 the rendered object is outside the cluster

where NRW is the rendered object’s number of pixels which do not correspond to pixels of
the segmented cluster.

3.3 PSO initialization
The PSO requires an initialization step in which different object pose hypotheses are assigned
to each particle. The segmentation phase provides a rough approximation of the 3D centroid
of a cluster. The latter is not necessarily the 3D centroid of the real object as errors in the
clustering step might lead to either over-segmentation (e.g., an object is split in two or more
clusters), or under-segmentation (e.g., a cluster does not enclose the whole object; thus object
borders or even small parts of an object are missing). However, the 3D centroid of a cluster
(c̄) can be exploited to generate the position component of the j-th particle (t j) as follows:

t j = t̂lo +
(
t̂hi− t̂lo

)
δ (12)

v j =−ṽ+2ṽδ (13)

t̂lo = c̄− t̃; , t̂hi = c̄+ t̃;

where: δ v U(0,1); t̃ is a constant relative position vector used to define the search space
domain of the translation component of the object pose. Eq. (13) assigns a linear velocity,
between the constant values ±ṽ, to the particle j.

The segmentation step cannot generate an estimate of the object orientation, so the object
attitude initialization and optimization are performed on the whole surface of the northern
hemisphere of S3. Let qinit ∈ S3 be a constant attitude quaternion lying on the surface of the
northern hemisphere of S3, the initial orientation of the j-th particle is generated as follows:

q j = cos(ψ)qinit +
1
2

sin(ψ)

ψ
qinit ? ω̂ jTc (14)

ω̂ j = ω̃ lo +(ω̃hi− ω̃ lo)δ (15)

ψ = ‖ω̂ j‖2
Tc

2

where Eq. (15) assigns a random angular velocity to the particle j. The dynamic range of
the initial angular velocity is limited by the values ω̃ lo and ω̃hi. The larger the difference

6 :

(a) (b)

Figure 1: (a) d_randGen array layout. (b) Layout of d_AABB for the particle i-th.

(ω̃hi− ω̃ lo), the greater will be the perturbation of the initial attitude quaternion qinit . Exper-
iments show that the choice of qinit has no influence on the convergence of the PSO as long
as a wide dynamic range of the initial angular velocity is provided. This result corroborates
the fact that our algorithm converges to the actual object pose without any prior knowledge
about the object attitude.

We also experimentally determined that the final fitness value of the best particle can be
used to discriminate correctly detected objects from false positives. This is necessary, since
the segmentation part inevitably produces a number of false positive regions.

4 GPU-based Particle Swarm pose optimization

Our own GPU implementation is loosely based upon [18], [5] and [8], as our approach
incorporates a rendering phase just before the evaluation of the fitness function. Moreover,
the fitness function gathers data from the rendering process to compute the quality of a
particle’s object pose hypothesis. These dissimilarities from the standard PSO algorithm
force us to define new data structures and new optimization techniques in order to develop
an efficient quaternion-based PSO algorithm on modern GPUs.

4.1 PSO Initialization on GPU

Particles’ current pose, best pose and the current velocity are set according to eqs. (12),
(13), (14) and (15). These equations require a random number sampled by the uniform
probability distibution (δ). We chose to generate the random numbers in CPU and load
them in GPU during intialization; this guarantees backward compatibility with older CUDA
versions. Let the dimensions of the search space be DIM and let the swarm size be NPART ,
with H >> DIM. We ensure no reduction in performances by adopting this technique since
a global memory coalesced access is performed on the d_randGen array (Figure 1a). A float
array of length [H ∗NPART] is initialized in host memory with random numbers. It is then
uploaded in device global memory (d_randGen).

Inside the initAllParticles() kernel, each thread has a unique ID (tIdx); moreover, each
thread increments a local variable (s_randIdx) when a new random number is needed. The
coalesced memory access shown in figure 1a is achieved by reading the global memory as
d_randGen[tIdx+(s_randIdx++)*NPART].

: 7

4.2 Rendering of the particles pose hypotesis

Each particle holds an object pose hypothesis that must be used to render the object model
onto the image plane in order to compute the particle’s fitness. In our algorithm the render-
ing is done directly in GPU. The OpenGL rendering pipeline would have slowed down the
entire optimization process, since OpenGL functions cannot be called inside a kernel func-
tion. Using OpenGL, all the particles pose should have been loaded back to CPU. OpenGL
should have performed the rendering of each particle sequentially onto a new depth buffer,
to avoid any depth value overwriting. Finally, the written depth buffer, allocated to each
particle, should have been uploaded to GPU in order to calculate the fitness score of the pose
hypotheses concurrently. The software rendering pipeline allows parallel rendering of the
particles and avoids time consuming memory copy between CPU and GPU at each iteration.

Our rendering pipeline is based on the optimized version of the edge function as ex-
plained in [13]. This technique allows a fast and parallel processing of the object mesh
triangles. Hence, the particles rendering phase offers two levels of parallelism: each parti-
cle renders its object model independently from the others and the rendering algorithm of
that particle is able to process many triangles at once. This ensures high occupancy of the
GPU. Achieving the two levels of parallelism inside a CUDA kernel is not straightforward
due to the SIMT (Single Instruction - Multiple Threads) computing architecture offered by
NVIDIA. To solve this problem we leverage the CUDA streams. Inside the rendering kernel
we assign one thread per triangle mesh while we are launching 16 streams. In an ideal case
the number of streams should be equal to the number of particles obtaining a complete par-
allelism among them. In the real case this cannot be achieved due to hardware limitations.
In our experiments opening more than 16 streams does not reduce anymore the time of the
rendering phase.

In the rendering phase we are also interested in finding the axis-aligned bounding box
(AABB) of the rendered object onto the depth buffer. The AABBs are necessary when the
fitness score of a particle is computed. To exploit all the parallelism offered by GPUs we
calculate the AABB of all the particles at once using the optimized version of the parallel re-
duction technique (see [3]). During the rendering stage we save the AABB of each rendered
triangle belonging to the object mesh in shared memory. Four shared memories are needed
in order to store separately the x and y coordinates of both the top-left and bottom-right cor-
ners of the rectangles. A minimum parallel reduction is then performed on the coordinates
of the top-left rectangles’ corners while a maximum parallel reduction is executed on the
bottom-right ones. The final AABB of a particle cannot be computed inside the rendering
kernel without using any atomic operation. This happens because shared memories are only
accessible from all the threads within the block. The shared memory allocated for a block
cannot be read by other blocks. Our solution is to store in a temporary array (d_AABB),
in global memory, all the final AABBs of each block obtained after parallel reduction. The
layout of the d_AABB can be seen in figure 1b. We reconstruct the actual AABB of a particle
by launching only a kernel with Nblocks = NPART and 64∗4 = 256 threads per block. The
above configuration along with the particular d_AABB layout guarantee a coalesced mem-
ory access and a very fast parallel reduction. The final AABB of each particle is stored in
d_finalAABB where only 4 out of the 32 elements reserved per particle are used.

8 :

4.3 Fitness function on GPU

We compute the fitness function 11 launching NPART times the designate kernel through 16
streams. Each kernel handles only a particle and runs a block of 1024 threads. This kernel
uses a grid-stride loop ([2]) to access 1024 pixels at once. We loop only within the AABB
obtained by the OR-operation between the particle’s AABB and the AABB of the segmented
depth cluster. A parallel sum reduction within the same kernel is then employed to execute
the final summation in 11, since only 1 block per particle is used.

4.4 Updating personal and global best on GPU

Our quaternion-based PSO employs the global topology where a fully-connected arrange-
ment lets the particles share information globally. Beforehand, a minimum parallel reduction
is performed among the fitness scores assigned to the particles. The particle with the mini-
mum fitness score is elected as the best particle of that iteration. A suitable kernel spawns
NPART threads and performs the particles’ personal update concurrently. To avoid atomic
operations in updating the particle global best, we test only the current best particle score
against the best score found until that iteration. If the strict minimum condition is true, the
current best particle is further elected as the best particle until that iteration. Finally, the up-
date of the particles pose and velocity in Eqs. (10), (9), (1) and (2) is completely parallelized
by using a thread per particle.

5 Experimental results
We tested our approach on two public datasets for 3D pose estimation [9] and [16]. The soft-
ware has been developed using the CUDA library in C++ under Linux and runs on GPU. The
source code will be available online. The algorithm was tested on a workstation equipped
with a GeForce GTX Titan X GPU. All the 3D models were decimated to 3072 faces, which
offers the best time performance with our hardware setup. This is a tradeoff, since subsam-
pling the 3D object will have a slight effect on the accuracy of pose estimation.

[10] contains 15 registered video sequences, each with a texture-less 3D object sur-
rounded by clutter. In [16], 6 objects are captured under varying viewpoint with lots of
background clutter, scale and pose changes, and in particular foreground occlusions and
multi-instance representation (three instances of the same object are present in each frame as
well as other objects and clutter). We tested the approach on a subset of objects and scenes.
Results are shown in Table 1. We compare the results with ground truth using the metric
from [10]. For all runs we used the following fixed parameters: γ = 0.001,kx = 1.2,kb =
0.05,α = 1,β = 0.05,Tc = 1, ω̃ lo = [0,−10,−10,−10]T , ω̃hi = [0,10,10,10]T ,c1 = c2 =
1,w = 0.3, t̃ = [0.3,0.3,0.3], ṽ = [3,3,3].

The segmentation algorithm runs on CPU and the average processing time per image is
0.4s; the pose estimation part runs on GPU. In our experiments we used 1024 particles for
the PSO and run 10 PSO iterations for each segmented cluster and the total time is 85ms
for each cluster. We use the global topology in all the experiments. By comparison, [10]
requires a training stage of 17-50s for each object and 119ms for detecting an object, but
with position and rotation constraints to achieve this speed (0-90◦ for tilt, ±45◦ for in-plane
rotation, 65-115cm for scaling). Figure 2 shows some examples of the algorithm on different
datasets. In Figure 3 we show some failure cases and discuss the probable causes.

: 9

Figure 2: Examples of the approach on different images. First row: RGB images; second
row: segmented objects; third row: detected object superimposed.

Figure 3: Examples of failed detections. First row: wrong estimated pose probably due to
the complex model and its over-simplification after subsampling; second row: a case with
a true positive (top object), a false positive (left object) and a wrong pose estimation (right
object) both due to bad segmentation.

The algorithm is also adaptable to articulated objects. In Figure 4 we show an example
of the PSO running on an object (laptop) composed by two parts (laptop base, laptop screen)
joined by an revolute joint.

6 Conclusion

We presented a fast approach for estimating the pose of simple objects from RGB-D images
for robotic grasping tasks.

A Particle Swarm Optimization algorithm, with a novel quaternion-based kinematics
formulation, is run on candidate object regions, extracted from the input image by a seg-
mentation algorithm, using a 3D CAD model of the object. The objective function is based
on raw depth information, as well as the contour of the object. Moreover, the final fitness
value can be used to further discard false positive regions from the segmentation part. The
PSO exploits the parallelization offered by GPU architecture and is able to run 10 iterations
at more than 10 fps on a modern GPU. Future work will be devoted to the full extension
of the algorithm to articulated objects with arbitrary number of links and experiments with

10 :

Approach [9] [16] Our Appr.
Sequence

Bench Vise 0.85 0.96 0.72
Driller 0.69 0.9 0.9
Phone 0.56 0.73 0.98
Duck 0.58 0.91 0.97

Eggbox 0.86 0.74 0.95
Glue 0.44 0.68 0.8

Approach [9] [16] Our Appr.
Sequence

Coffee Cup 0.82 0.88 0.85
Shampoo 0.63 0.76 0.9

Juice Carton 0.49 0.87 0.4
Milk 0.18 0.39 0.67

Table 1: (a) Comparison between different approaches on the[10] dataset. (b) Comparison
between different approaches on the[16] dataset.

different segmentation algorithms.

Figure 4: Examples of the algorithm running on a 2-parts articulated object.

7 Acknowledgements
This work was done in collaboration with TIM S.p.A.; the GPU used for this research was
donated by the NVIDIA Corporation.

References
[1] Amazon picking challenge. Website. http://amazonpickingchallenge.

org.

[2] Cuda grid-stride loop. Website. https://devblogs.nvidia.com/parallelforall/cuda-pro-
tip-write-flexible-kernels-grid-stride-loops/.

[3] Cuda sum reduction. Presentation. http://developer.download.nvidia.com/compute/cuda/1.1-
Beta/x86_website/projects/reduction/doc/reduction.pdf.

[4] Aitor Aldoma, Federico Tombari, Radu Bogdan Rusu, and Markus Vincze. Pattern
Recognition: Joint 34th DAGM and 36th OAGM Symposium, Graz, Austria, August
28-31, 2012. Proceedings, chapter OUR-CVFH – Oriented, Unique and Repeatable
Clustered Viewpoint Feature Histogram for Object Recognition and 6DOF Pose Esti-
mation, pages 113–122. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN
978-3-642-32717-9. doi: 10.1007/978-3-642-32717-9_12.

[5] Carmelo Bastos-Filho, Débora Nascimento, and Marcos Oliveira Junior. Running par-
ticle swarm optimization on graphic processing units. INTECH Open Access Publisher,
2011.

: 11

[6] Ujwal Bonde, Vijay Badrinarayanan, and Roberto Cipolla. Robust instance recognition
in presence of occlusion and clutter. In European Conference on Computer Vision,
pages 520–535. Springer, 2014.

[7] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and
Carsten Rother. Learning 6d object pose estimation using 3d object coordinates. In
European Conference on Computer Vision, pages 536–551. Springer, 2014.

[8] L de P Veronese and Renato A Krohling. Swarm’s flight: accelerating the particles
using c-cuda. In Evolutionary Computation, 2009. CEC’09. IEEE Congress on, pages
3264–3270. IEEE, 2009.

[9] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lepetit.
Multimodal templates for real-time detection of texture-less objects in heavily cluttered
scenes. 2011.

[10] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt
Konolige, and Nassir Navab. Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Computer Vision–ACCV 2012,
pages 548–562. Springer, 2012.

[11] T. HodaÅĹ, X. Zabulis, M. Lourakis, Åă ObdrÅ¿Ãąlek, and J. Matas. Detection and
fine 3d pose estimation of texture-less objects in rgb-d images. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 4421–4428,
Sept 2015. doi: 10.1109/IROS.2015.7354005.

[12] James Kennedy. Particle swarm optimization. In Encyclopedia of Machine Learning,
pages 760–766. Springer, 2010.

[13] Juan Pineda. A parallel algorithm for polygon rasterization. In ACM SIGGRAPH
Computer Graphics, volume 22, pages 17–20. ACM, 1988.

[14] Colin Rennie, Rahul Shome, Kostas E. Bekris, and Alberto F. De Souza. A dataset
for improved rgbd-based object detection and pose estimation for warehouse pick-and-
place. CoRR, abs/1509.01277, 2016.

[15] Ken Shoemake. Animating rotation with quaternion curves. In ACM SIGGRAPH
computer graphics, volume 19, pages 245–254. ACM, 1985.

[16] Alykhan Tejani, Danhang Tang, Rigas Kouskouridas, and Tae-Kyun Kim. Latent-class
hough forests for 3d object detection and pose estimation. In Computer Vision–ECCV
2014, pages 462–477. Springer, 2014.

[17] Giorgio Toscana and Stefano Rosa. Fast graph-based object segmentation for rgb-d
images. CoRR, abs/1605.03746, 2016.

[18] You Zhou and Ying Tan. Gpu-based parallel particle swarm optimization. In Evo-
lutionary Computation, 2009. CEC’09. IEEE Congress on, pages 1493–1500. IEEE,
2009.

