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Abstract

We present Mean Box Pooling, a novel visual representation that pools over CNN
representations of a large number, highly overlapping object proposals. We show that
such representation together with nCCA, a successful multimodal embedding technique,
achieves state-of-the-art performance on the Visual Madlibs task. Moreover, inspired
by the nCCA’s objective function, we extend classical CNN+LSTM approach to train
the network by directly maximizing the similarity between the internal representation of
the deep learning architecture and candidate answers. Again, such approach achieves
a significant improvement over the prior work that also uses CNN+LSTM approach on
Visual Madlibs.

1 Introduction

Figure 1: Illustration of proposed Mean Box
Pooling representation.

Question answering about real-world im-
ages is a relatively new research thread
[2, 5, 14, 15] that requires a chain of ma-
chine visual perception, natural language
understanding, and deductive capabilities to
successfully come up with an answer on
a question about visual content. Although
similar in nature to image description [3, 8, 27] it requires a more focused attention to details
in the visual content, yet it is easier to evaluate different architectures on the task. Moreover,
in contrast to many classical Computer Vision problems such as recognition or detection,
the task does not evaluate any internal representation of methods, yet it requires a holistic
understanding of the image. Arguably, it is also less prone to over-interpretations compared
with the classical Turing Test [16, 25].

To foster progress on this task, a few metrics and datasets have been proposed [2, 4,
14, 20]. The recently introduced Visual Madlibs task [32] removes ambiguities in question
or scene interpretations by introducing a multiple choice “filling the blank” task, where a
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machine has to complete the prompted sentence. Such completed sentence is next matched
against four ground truth answers. Thanks to such a problem formulation, a traditional
accuracy measure can be used to monitor the progress on this task. Due to its unambiguous
evaluation, this work focuses on this task.

Contributions. We present two main contributions.
Mean Box Pooling: We argue for a rich image representation in the form of pooled rep-
resentations of the objects. Although related ideas have been explored for visual question
answering [22], and even have been used in Visual Madlibs [32], we are first to show a sig-
nificant improvement of such representation by using object proposals. More precisely, we
argue for an approach that pools over a large number, highly overlapping object proposals.
This, arguably, increases the recall of extracting bounding boxes that describe an object, but
also allows for multi-scale and multi-parts object representation. Our approach in the com-
bination with the Normalized Correlation Analysis embedding technique improves on the
state-of-the-art of the Visual Madlibs task.
Text-Embedding Loss: Motivated by the popularity of deep architectures for visual question
answering, that combine a global CNN image representation with an LSTM [7] question
representation [4, 13, 17, 20, 29, 30, 31], as well as the leading performance of nCCA on
the multi-choice Visual Madlibs task [32], we propose a novel extension of the CNN+LSTM
architecture that chooses a prompt completion out of four candidates (see Figure 4) by mea-
suring similarities directly in the embedding space. This contrasts with the prior approach
of [32] that uses a post-hoc comparison between the discrete output of the CNN+LSTM
method and all four candidates. To achieve this, we directly train an LSTM with a cosine
similarity loss between the output embedding of the network and language representation of
the ground truth completion. Such an approach integrates more tightly with the multi-choice
filling the blanks task, and significantly outperforms the prior CNN+LSTM method [32].

2 Related Work
Question answering about images is a relatively new task that switches focus from recogniz-
ing objects in the scene to a holistic “image understanding”. The very first work [14] on this
topic has considered real world indoor scenes with associated natural language questions and
answers. Since then different variants and larger datasets have been proposed: FM-IQA [4],
COCO-QA [20], and VQA [2]. Although answering questions on images is, arguably, more
susceptible to automatic evaluation than the image description task [3, 8, 27], ambiguities
in the output space still remain. While such ambiguities can be handled using appropriate
metrics [14, 15, 17, 26], Visual Madlibs [32] has taken another direction, and handles them
directly within the task. It asks machines to fill the blank prompted with a natural language
description with a phrase chosen from four candidate completions (Figure 4). In general,
the phrase together with the prompted sentence should serve as the accurate description of
the image. With such problem formulation the standard accuracy measure is sufficient to
automatically evaluate the architectures. The first proposed architecture [14] to deal with the
question answering about images task uses image analysis methods and a set of hand-defined
schemas to create a database of visual facts. The mapping from questions to executable sym-
bolic representations is done by a semantic parser [12]. Later deep learning approaches for
question answering either generate [4, 17] answers or predict answers [13, 20] over a fixed
set of choices. Most recently, attention based architectures, which put weights on a fixed grid
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Figure 2: Overview of our full model, i.e. our proposed image representation using Mean
Box Pooling, text encoding using average of Word2Vec representations, and normalized
CCA for learning the joint space.

over the image, yield state of the art results [29, 30, 31]. Another, more focused “hard” atten-
tion, has also been studied in the image-to-text retrieval scenario [9] as well as fine-grained
categorization [33], person recognition [19] and zero-shot learning [1]. Here representa-
tions are computed on objects, visual fragments or parts, that are further aggregated to form
a visual representation. Closer to our work, [22] use Edge Boxes [34] to form memories
[28] consisting of different image fragments that are either pooled or “softmax” weighted
in order to provide the final score. However, in contrast to [22], our experiments indicate a
strong improvement by using object proposals. While a majority of the most recent work on
visual question answering combine LSTM [7] with CNN [11, 23, 24] by concatenation or
summation or piece-wise multiplication, Canonical Correlation Analysis (CCA and nCCA)
[6] have also been shown to be a very effective multimodal embedding technique [32]. Our
work further investigates this embedding method as well as brings ideas from CCA over to
an CNN+LSTM formulation.

3 Method
We use normalized CCA (nCCA) [6] to embed the textual embedding of answers and the
visual representation of the image into a joint space, where candidate sentence completions
are compared to the image. Furthermore, we also extend popular in the VQA community
CNN+LSTM approach by learning to compare in the answer space.

In Section 3.1, we propose a richer representation of the entire image obtained by pooling
of CNN representations extracted from object proposals. Figure 1 illustrates the proposed
Mean Box Pooling image representation and Figure 2 illustrates our whole method. In Sec-
tion 3.3, we describe nCCA approach to encode two modalities into a joint space in greater
details. In Section 3.4, we also investigate a CNN+LSTM architecture. Instead of generating
a prompt completion that is next compared against candidate completions in a post-hoc pro-
cess, we propose to choose a candidate completion by directly comparing candidates in the
embedding space. This puts CNN+LSTM approach closer to nCCA with a tighter integration
with the multi-choice Visual Madlibs task. This approach is depicted in Figure 3.
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Figure 3: CNN+LSTM architecture that learns to choose the right answer directly in the
embedding space. The output embedding is jointly trained with the whole architecture via
backpropagation.

3.1 Mean Box Pooling Image Representation
Figure 1 illustrates our proposed image representation, which starts from extracting object
proposals from the raw image. Next such object proposals are encoded via a CNN, and
pooled in order to create a feature vector representation of the image.

Extracting Region Proposals. Since questions are mainly about salient parts of the image,
it seems reasonable to use object detection in order to extract such parts from the image. At
the same time, however, it is important to not miss any object in the image. Moreover,
arguably, sampling a context of the objects and capturing multi-scale, multi-parts properties
seem to be important as well. Given all these reasons, we choose to use Edge Boxes [34] in
order to generate a set of object bounding box proposals for feature extraction.

Edge Boxes extract a number of bounding boxes along with a score for each bounding
box that is interpreted as a confidence score that the bounding box contains an object. In
our study, two hyper parameters are important: Non-Maxima Suppression and the number
of proposals. The latter defines how many object proposals we want to maintain and hence
implicitly influence recall of the proposals, while the former defines a threshold β such that
all predicted bounding boxes with the intersection over union greater than β are removed. In
practice, the lower the β the more spread the object proposals are.

Feature Extraction. Once the object proposals are extracted, we use output of the “fc7”
layer of the VGG network [23] on the extracted image crops to encode the proposals. VGG
is among the best performing recognition architectures on the large scale object recognition
task [21].

Pooling for Image Representation. Our final image representation is constructed by pool-
ing the encoded object proposals together with the global image representation. Since we do
not want to associate any particular order over the extracted object proposals, we investigate
popular order-less pooling schemes.
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3.2 Pooling for Answer Representation.
We encode each word in the answer with a 300 dimensional word embedding [18]. The
embedded words are next mean pooled to form a vector representation of the answer. Note
that, we do not encode prompts as they follow the same pattern for each Visual Madlibs
category.

3.3 Multimodal Embedding
We use the Normalized Canonical Correlation Analysis (nCCA) to learn a mapping from
two modalities: image and textual answers, into a joint embedding space. This embedding
method has shown outstanding performance on the Visual Madlibs task [32]. At the test
time, given the encoded image, we choose an answer (encoded by the mean pooling over
word2vec words representations) from the set of four candidate answers that is the most
similar to the encoded image in the multimodal embedding space. Formally, the Canonical
Correlation Analysis (CCA) maximizes the cosine similarity between two modalities (also
called views) in the embedding space, that is:

W ∗1 ,W
∗
2 = argmax

W 1,W 2

tr(X̂T Ŷ )

subject to X̂T X̂ = Ŷ T Ŷ = I

where tr is the matrix trace, X̂ := XW1, Ŷ := YW2, and X ,Y are two views (encoded images,
and textual answers in our case). Normalized Canonical Correlation Analysis (nCCA) [6]
has been reported to work significantly better than the plain CCA. Here, columns of the
projection matrices W1 and W2 are scaled by the p-th power (p=4) of the corresponding eigen
values. The improvement is consistent with the findings of [32], where nCCA performs
better than CCA by about five percentage points in average on the hard task.

3.4 CNN+LSTM with Text-Embedding Loss
We present our novel architecture that extends prior approaches on question answering about
images [4, 13, 17, 20, 29, 30, 31] by learning similarity between candidate labels and internal
output embedding of the neural network. Figure 3 depicts our architecture. Similarly to prior
work, we encode an image with a CNN encoder that is next concatenated with (learnable)
word embeddings of the prompt sentence, and fed to a recurrent neural network. We use a
special ‘<BLANK>’ token to denote the empty blank space in the image description. On
the other side, for each completion candidate s we compute its representation by averaging
over word2vec [18] representations of the words contributing to s. However, in contrast to
the prior work [32], instead of comparing the discrete output of the network with the repre-
sentation of s, we directly optimize an objective in the embedding space. During training we
maximize the similarity measure between the output embedding and the representation of σ
by optimizing the following objective:

Θ∗ = argmax
Θ

∑
i

embedding(xi;Θ)T
(
∑w∈ŝi word2vec(w)

)

||embedding(xi;Θ)|| ||∑w∈ŝi word2vec(w)|| ,

which is a cosine similarity between the representation of the available during the training
correct completion ŝi, and an output embedding vector of the i-th image-prompt training
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Figure 8: Some example question-answering results from nCCA. First row shows correct choices. Second row shows incor-
rect choices.

BLEU-1 BLEU-2
nCCA nCCA(bbox ) CNN+LSTM nCCA nCCA(box) CNN+LSTM

1. scene 0.52 � 0.62 0.17 � 0.19
2. emotion 0.17 � 0.39 0 � 0
3. future 0.38 � 0.32 0.12 � 0.08
4. past 0.39 � 0.42 0.12 � 0.11
5. interesting 0.49 � 0.51 0.14 � 0.15
6. obj attr 0.28 0.36 0.45 0.02 0.02 0.01
7. obj aff 0.56 0.60 � 0.10 0.11 �
8. obj pos 0.53 0.55 0.71 0.24 0.25 0.50
9. per attr 0.26 0.29 0.55 0.06 0.07 0.25
10. per act 0.47 0.41 0.52 0.14 0.11 0.22
11. per loc 0.52 0.46 0.64 0.22 019 0.39
12. pair rel 0.46 0.48 � 0.07 0.08 �

Table 4: BLEU-1 and BLEU-2 computed on Madlibs testing dataset for different approaches.

ImageNet using R-CNN [13], covering 42 MS COCO cat-
egories. We observe similar performance between ground-
truth and detected bounding boxes in Table 3.

As an additional experiment we ask humans to answer
the multiple choice task, with 5 Turkers answering each
question. We use their results to filter out a subset of
the hard multiple-choice questions where at least 3 Turk-
ers choose the correct answer. Results of the methods on
this subset are shown in Table 2 bottom set of rows. These
results show the same pattern as on the unfiltered set, with
slightly higher accuracy.

Table 4 shows BLEU-1 and BLEU-2 scores for targeted
generation. Although the CNN+LSTM models we trained
on Madlibs were not quite as accurate as nCCA for selecting
the correct multiple-choice answer, they did result in better,
sometimes much better, accuracy (as measured by BLEU
scores) for targeted generation.

7. Conclusions
We have introduced a new fill-in-the blank strategy for

targeted natural language descriptions and used this to col-
lect a Visual Madlibs dataset. Our analyses show that these
descriptions are usually more detailed than generic whole
image descriptions. We also introduce a targeted natu-
ral language description generation task, and a multiple-
choice question answering task, then train and evaluate
joint-embedding and generation models. Data produced by
this paper will be publicly released upon acceptance.
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Figure 4: Some examples of the multi-choice filling the blank Visual Madlib task [32].

instance xi; Θ denotes all the parameters of the architecture. At test time, we choose a
completion ŝ by:

ŝ = argmax
s∈S

embedding(x;Θ∗)T (∑w∈s word2vec(w))
||embedding(x;Θ∗)|| ||∑w∈s word2vec(w)|| ,

where S denotes a set of available candidate prompt completions, x is the image-prompt pair
fed to the network, and Θ∗ denotes all the learnt parameters.

4 Experimental Results

We evaluate our method on the multiple choice task of the Visual Madlibs dataset. The
dataset consists of about 360k descriptions, spanning 12 different categories specified by
different types of templates, of about 10k images. The selected images from the MS COCO
dataset comes with rich annotations. In the multi-choice scenario a textual prompt is given
(every category follows the same, fixed template) with a blank to be filled, together with 4
candidate completions (see Figure 4). Every category represents a different type of question
including scenes, affordances, emotions, or activities (the full list is shown in the first column
of Table 1). Since each category has fixed prompt, there is no need to include the prompt in
the modeling given the training is done per each category. Finally, Visual Madlibs considers
an easy and difficult tasks that differ in how the negative 3 candidate completions (distrac-
tors) are chosen. In the easy task, the distractors are randomly chosen from three descriptions
of the same question type from other images. In the hard task, 3 distractors are chosen only
from these images that contain the same objects as the given question image, and hence it
requires a more careful and detailed image understanding. We use ADAM gradient descent
method [10] with default hyper-parameters.

Different Non Maxima Suppression Thresholds. Table 1 shows the accuracy of our
CCA model with mean edge-box pooling for two different Non Maxima Suppression (NMS)
thresholds β . In the experiments we use up to 100 object proposals, as we have observed
saturation for higher numbers. From Table 1, we can see that for both tasks, easy and hard,
higher NMS thresholds are preferred. More precisely, the threshold 0.75 outperforms 0.30
in average by 2.4 percentage points for the easy task, and by 1.8 percentage points for the
hard task. We have also experimented with max pooling, but mean pooling has performed
by about 0.5 percentage points better in average in all our experiments. The experiments,
counterintuitively, suggest that many selected bounding boxes with high overlap are still
beneficial in achieving better performance. Further experiments use mean pooling and the
NMS threshold 0.75.
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Easy Task Hard Task
NMS thresholds: 0.30 0.75 0.30 0.75

Image’s scenes 84.6 86.2 67.8 69.0
Image’s emotion 52.0 52.5 38.8 39.4
Image’s past 78.9 80.8 53.0 54.6
Image’s future 78.6 81.1 55.2 56.1
Image’s interesting 76.8 78.2 53.5 54.2
Object’s attribute 60.4 62.4 43.1 45.7
Object’s affordance 80.4 83.3 62.5 63.6
Object’s position 73.5 77.4 53.6 56.3
Person’s attribute 53.1 56.0 42.0 44.2
Person’s activity 79.9 83.0 63.2 65.5
Person’s location 82.4 84.3 63.8 65.2
Pair’s relationship 71.0 75.3 51.8 55.7
Average 72.6 75.0 54.0 55.8

Table 1: Accuracies computed for different Non Maxima Suppression thresholds (NMS) on
the easy and hard tasks of the Visual Madlibs dataset. Mean pooling and 100 object proposals
are used in the experiments. Results in %.

Easy Task
Number of proposals 10 25 50 100

Scenes 84.5 85.5 86.0 86.2
Emotion 49.9 51.6 52.1 52.5
Past 78.7 80.0 80.6 80.8
Future 78.7 79.7 80.7 81.1
Interesting 75.4 77.2 77.9 78.2
Obj. attr. 59.0 60.9 61.7 62.4
Obj. aff. 81.2 82.4 83.0 83.3
Obj. pos. 75.4 76.6 77.4 77.5
Per. attr. 51.4 53.3 55.0 56.0
Per. act. 80.7 82.2 82.9 83.0
Per. loc. 82.9 83.9 84.0 84.3
Pair’s rel. 72.4 73.9 74.6 75.3
Average 72.5 73.9 74.7 75.0

Hard Task
Number of proposals 10 25 50 100

Scenes 68.0 68.6 68.9 69.0
Emotion 37.9 38.1 38.8 39.4
Past 52.8 53.9 54.3 54.6
Future 54.4 55.0 55.8 56.1
Interesting 51.9 53.6 53.7 54.2
Obj. attr. 43.7 44.0 44.9 45.7
Obj. aff. 62.4 63.0 63.4 63.6
Obj. pos. 55.1 55.5 56.3 56.3
Per. attr. 41.6 42.2 43.0 44.2
Per. act. 63.7 64.7 65.3 65.5
Per. loc. 64.2 64.8 64.8 65.2
Pair’s rel. 53.6 54.5 54.9 55.7
Average 54.1 54.8 55.3 55.8

Table 2: Accuracies computed for different number of Edge Box proposals on the easy and
hard tasks of the Visual Madlibs dataset. The NMS threshold 0.75 and mean-pooling is used
for all the experiments. Results in %.

Different number of object proposals. The maximal number of object proposals is the
second factor of Edge Boxes that we study in this work. A larger number of proposals tend
to cover a larger fraction of the input image. Moreover, the higher number together with
the higher NMS threshold can assign proposals to both an object, and its parts, effectively
forming a multi-scale and multi-parts object representation. Table 2 shows the accuracy of
our model with different number of Edge Box proposals. The experiments suggest using a
larger numbers of proposals, however the gain diminishes with the larger numbers.

Comparison to the state-of-the-art. Guided by the results of the previous experiments,
we compare nCCA that uses Edge Boxes object proposals (nCCA (ours)) with the state-of-
the-arts on Visual Madlibs (nCCA [32]). Both models use the same VGG Convolutional
Neural Network [23] to encode images (or theirs crops), and word2vec to encode words.
The models are trained per category (a model trained over all the categories performs in-
ferior on the hard task [32]). As Table 3 shows using a large number of object proposals
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Easy Task Hard Task
nCCA (ours) nCCA [32] nCCA (ours) nCCA [32]

Scenes 86.2 86.8 69.0 70.1
Emotion 52.5 49.2 39.4 37.2
Past 80.8 77.5 54.6 52.8
Future 81.1 78.0 56.1 54.3
Interesting 78.2 76.5 54.2 53.7
Obj. attr. 62.4 47.5 45.7 43.6
Obj. aff. 83.3 73.0 63.6 63.5
Obj. pos. 77.5 65.9 56.3 55.7
Per. attr. 56.0 48.0 44.2 38.6
Per. act. 83.0 80.7 65.5 65.4
Per. loc. 84.3 82.7 65.2 63.3
Pair’s rel. 75.3 63.0 55.7 54.3
Average 75.0 69.1 55.8 54.4

Table 3: Accuracies computed for different approaches on the easy and hard tasks. nCCA
(ours) uses the representation with object proposals (NMS 0.75, and 100 proposals with
mean-pooling). nCCA uses the whole image representation. Results in %.

Easy Task Hard Task
nCCA (ours) nCCA (bbox) [32] nCCA (ours) nCCA (bbox) [32]

Obj. attr. 62.4 54.7 45.7 49.8
Obj. aff. 83.3 72.2 63.6 63.0
Obj. pos. 77.5 58.9 56.3 50.7
Per. attr. 56.0 53.1 44.2 46.1
Per. act. 83.0 75.6 65.5 65.1
Per. loc. 84.3 73.8 65.2 57.8
Pair’s rel. 75.3 64.2 55.7 56.5
Average 74.5 64.6 56.6 55.6

Table 4: Accuracies computed for different approaches on the easy and hard task. nCCA
(ours) uses the representation with object proposals (NMS 0.75, and 100 proposals with
mean-pooling). nCCA(bbox) mean-pools over the representations computed on the available
ground-truth bounding boxes both at train and test time. The averages are computed only
over 7 categories. Results in %.

improves over global, full frame nCCA by 5.9 percentage points on the easy task, and about
1.4 percentage points on the difficult task in average. However, our nCCA also consistently
outperforms state-of-the-art on every category except the ‘Scenes’ category. This suggests
that better localized object oriented representation is beneficial. However, Edge Boxes only
roughly localize objects. This naturally leads to the following question if better localization
helps. To see the limits, we compare nCCA (ours) against nCCA (bbox) [32] that crops
over ground truth bounding boxes from MS COCO segmentations and next averages over
theirs representations (Table 3 in [32] shows that ground truth bounding boxes outperforms
automatically detected bounding boxes, and hence they can be seen as an upper bound for
a detection method trained to detect objects on MS COCO). Surprisingly, nCCA (ours) out-
performs nCCA (bbox) by a large margin as Table 4 shows. Arguably, object proposals have
better recall and captures multi-scale, multi-parts phenomena.

CNN+LSTM with comparison in the output embedding space. On one hand nCCA
tops the leaderboard on the Visual Madlibs task [32]. On the other hand, the largest body of
work on the question answering about images [2, 4, 14, 20] combines a CNN with an LSTM
[4, 13, 17, 20, 29, 30, 31]. We hypothesize that, likewise to nCCA, in order to choose a
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Easy Task Hard Task
Embedded Ask Your CNN+LSTM Embedded CNN+LSTM

CNN+LSTM (ours) Neurons [17] [32] CNN+LSTM (ours) [32]

Scenes 74.7 70.6 71.1 62.1 60.5
Emotion 36.2 35.7 34.0 34.3 32.7
Past 46.8 44.9 35.8 42.5 32.0
Future 48.1 41.2 40.0 41.4 34.3
Interesting 49.9 49.1 39.8 40.1 33.3
Obj. attr. 46.5 45.5 45.4 40.6 40.3
Obj. aff. 68.5 64.3 - 86.4 -
Obj. pos. 53.3 49.5 50.9 45.0 44.9
Per. attr. 40.7 39.9 37.3 40.0 35.1
Per. act. 64.1 62.6 63.7 53.7 53.6
Per. loc. 61.5 59.1 59.2 51.4 49.3
Pair’s rel. 66.2 60.1 - 54.5 -
Average 54.7 51.9 47.7 49.3 41.7

Table 5: Comparison between our Embedded CNN+LSTM approach that computes the
similarity between input and candidate answers in the embedding space, and the plain
CNN+LSTM original approach from [32]. Since the accuracies of CNN+LSTM [32] are
unavailable for two categories, we report average over 10 categories in this case. Results in
%.

completion of the prompt sentence out of four candidates, the comparison between the can-
didate completions should be directly done in the output embedding space. This contrasts to
a post-hoc process used in [32] where an image description architecture (CNN+LSTM) first
generates a completion that is next compared against the candidates in the word2vec space
(see section 3 for more details). Moreover, since the “Ask Your Neurons” architecture [17]
is more suitable for the question answering task, we extend that method to do comparisons
directly in the embedding space (“Embedded CNN+LSTM” in Table 5). Note that, here we
feed the sentence prompt to LSTM even though it is fixed per category. Table 5 shows the
performance of different methods. Our “Embedded CNN+LSTM” outperforms other meth-
ods on both tasks confirming our hypothesis. “Ask Your Neurons” [17] is also slightly better
than the original CNN+LSTM [32] (on the 10 categories that the results for CNN+LSTM are
available it achieves 49.8% accuracy on the easy task, which is 2.1 percentage points higher
than CNN+LSTM).

5 Conclusion

We study an image representation formed by averaging over representations of object pro-
posals, and show its effectiveness through experimental evaluation on the Visual Madlibs
dataset [32]. We achieve state of the art performance on the multi-choice “filling the blank”
task. We have also shown and discussed effects of different parameters that affect how the
proposals are obtained. Surprisingly, the larger number of proposals the better overall perfor-
mance. Moreover, the model benefits even from highly overlapping proposals. Such model
even outperforms the prior work that uses ground truth bounding boxes from the MS COCO
dataset. The proposed representation can be considered as a valid alternative to ‘soft’ atten-
tion representations such as implemented in recent work of visual question answering using
memory networks [31]. Due to its popularity on question answering about images tasks,
we also investigate a CNN+LSTM approach that chooses a prompt completion candidate by
doing comparisons directly in the embedding space. This approach contrasts with a post-
hoc solution of the previous work allowing for a tighter integration of the model with the
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multi-choice task.
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