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Abstract

Estimating the pose of a camera from a scene model is a challenging problem when
the camera is in a position not covered by the views used to build the model, because
feature matching is difficult. Several viewpoint simulation techniques have been recently
proposed in this context. They generally come with a high computational cost, are lim-
ited to specific scenes such as urban environments or object-centred scenes, or need an
initial pose guess. This paper presents a viewpoint simulation method well suited to most
scenes and query views. Two major problems are addressed: the positioning of the vir-
tual viewpoints with respect to the scene, and the synthesis of geometrically consistent
patches. Experiments show that patch synthesis dramatically improves the accuracy of
the pose in case of difficult registration, with a limited computational cost.

1 Introduction
Camera pose estimation from a single query view and an unstructured scene model, typ-
ically made of a 3D point cloud endowed with local photometric descriptors, is encoun-
tered in many computer vision applications. These applications include, for instance, aug-
mented reality applications [4], vision-based robot positioning [6] and aerial image geo-
registration [25]. In many applications, the scene model is built from a collection of images
(called here construction views) with a structure-from-motion (SfM) algorithm. The local
descriptors of the 3D points are extracted from the construction views as, e.g., SIFT fea-
tures [16]. Afterward, these descriptors are used to match interest points of the query view
and 3D points, which makes it possible to solve the perspective-n-point (PnP) problem [9]
and estimate the pose. This approach presents a major issue when the construction views do
not cover the whole set of potential viewpoints. Indeed, a query view taken from an uncov-
ered viewpoint is likely to give too few reliable point correspondences because of the limited
invariance of the photometric descriptors to viewpoint changes [19]. A good example of
such a situation is described by the authors of [25] who aim at registering a view from an
aerial drone to a model built from ground-level construction views.

To make the matching step easier, several recent works propose to generate synthetic
views from the construction views through some geometric transformations corresponding
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to uncovered viewpoints, for instance [17, 20] in the context of image matching and [23] in
the context of pose estimation. The existing approaches are generally dedicated to specific
scene types or do not scale up well. The objective of the present work is to propose a view
synthesis method that is tractable for most scenes and makes pose estimation possible for
any query view in the scene. The following section discusses the related literature.

1.1 View synthesis for pose estimation
Two views of a plane of equation nT X + d = 0 in the 3D scene, taken from cameras with
projection matrices Pi = Ki[Ri|Ti] (i ∈ {1,2}, where Ki is the intrinsic parameter matrix and
[Ri|Ti] is the camera pose) can be mapped by a homography of equation

H = K2(R−T nT/d)K−1
1 (1)

where R = R2RT
1 and T = T2 −RT1, see [8].

It is therefore possible to generate, for any virtual camera P2, a synthetic view of a locally
planar part of the 3D scene, from a construction view corresponding to the real camera P1.
Photometric descriptors can be extracted from such a synthetic view to enrich the scene
model and make it easier to match a query view. An open question is, however, to select
appropriate virtual positions with respect to the observed scene.

The authors of [14, 15, 30] generate fronto-parallel views of planar structures, which
comes down to choosing a single virtual position in front of the considered scene planes.
Robustness to viewpoint changes is improved but still limited in case of slanted views of the
plane. In [28], pose estimation in a urban environment is addressed. The virtual positions lie
on a dense grid at street level and a rough 3D planar model of the scene is used. Synthetic
views, generated in [28] by ray-tracing, are matched to the query view, which gives reliable
place recognition. Synthetic views from street level are also used in [11] to improve image
registration to urban models. The preceding papers focuses on images taken by a pedestrian
in a urban environments, which justifies the eye-level view assumption. The authors of [25]
address the ground-to-aerial registration problem where this simplifying assumption does not
hold. Nevertheless, they assume that an estimation of the aerial position is available from
GPS tags. This makes it possible to generate a synthetic view from a dense reconstruction of
the scene corresponding to the GPS position, which can be accurately registered to the query
view. A similar idea is exploited in [6] in the context of vision-based robot localization where
it is assumed that an estimation of the pose is available to drive view synthesis. The same
assumption is used in some simultaneous localization and mapping (SLAM) applications to
generate synthetic patches, after [18], or in tracking-by-synthesis [27].

These works require either a dense scene model (or a multiplanar textured reconstruction
of the scene) [11, 15, 28, 30], or an initial guess for the pose [6, 25, 27]. In [23], no initial
guess is available and the scene model is an unstructured 3D point cloud. It is assumed,
however, that virtual viewpoints are regularly distributed on a sphere centered on the model.
This restricts the applicability to relatively small object-centered scenes. In addition, all
viewpoints have to be simulated to produce synthetic patches for all 3D points, making the
algorithm quite demanding in terms of computing time.

As a conclusion of this short survey, and to the best of our knowledge, it seems that
existing view synthesis approaches generally need some prior information on the scene or
do not simply scale up to larger scenes.

In this paper, we consider pose estimation from a query view, based on a SfM model of
the scene, without initial pose guess. For instance, such a problem has to be solved when
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initializing a tracking process. Each 3D point of the model is endowed with the collection
of the corresponding SIFT descriptors matched in the SfM step. SIFT keypoints from the
query view are matched to the model points by nearest-neighbour matching followed by
PnP-RANSAC [7]. Our goal is to add SIFT descriptors coming from synthesized patches in
order to facilitate keypoint matching when the query view is not covered by the construction
views. The additional SIFT descriptors are extracted around the reprojected scene points in
the synthesized patches. Two problems have to be solved in a computationally efficient way:
the positioning of the virtual cameras with respect to the scene in order to cover all potential
viewpoints, and the simulation of realistic views from these virtual cameras.

1.2 Contributions
Our contributions are twofold. In Section 2, we propose a method to position the virtual
viewpoints with respect to a segmentation of the scene in planar parts. An adapted measure
for viewpoint changes, introduced in [20], ensures that the existing viewpoints are completed
with relatively few virtual viewpoints. This positioning is generic and does not require any
limiting assumption on the sought pose. In Section 3, we propose an efficient scheme for
viewpoint simulation. In [11, 25, 28], an image is generated for any virtual viewpoint thanks
to the dense scene model, and subsequently matched to the query view. In [6, 23], local
patches are generated for any interest point thanks to a local planarity assumption. The first
approach fails in cases where some parts of the scene are not correctly densified, and the
latter is computationally demanding without any pose guess. We propose an intermediate
approach consisting in synthesizing semi-local planar patches of the scene and enriching the
scene model with descriptors from these synthesized patches, using a visibility constraint.
Section 4 shows that this approach is sound and tractable for scenes ranging from small
objects to complete buildings.

2 Virtual viewpoint positioning
We position virtual viewpoints in the scene, in order to simulate, in a subsequent stage, the
appearance of the scene viewed from these viewpoints. The proposed method is based on the
assumption that the scene is piecewise planar, which is not restrictive in most human-made
environments. The following subsections discuss how to sample virtual viewpoints around a
planar patch, and how to segment a point model into a set of planar patches.

2.1 View direction sampling
Considering a planar patch, we want any potential view of the patch to be close enough
either to one of the simulated viewpoints or to one of the construction views, in order that
SIFT features extracted from them can be matched. With affine cameras, the transition tilt,
defined in [20], is a good indication of how easy it is to match SIFT features. Although it
has been shown in [23] that homographic synthesis yields better results than affine synthesis,
the affine model, as a first order approximation, is sufficient to position synthetic viewpoints.
If A is the affine map between two images I1 and I2 of a planar scene (that is, I2 = AI1), then
A has a unique decomposition:

A = λ R(ψ)Tt R(φ) = λ
(

cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

)(
t 0
0 1

)(
cos(φ) −sin(φ)
sin(φ) cos(φ)

)
(2)
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Figure 1: In (1), parameterization of an affine camera pointing to a planar patch: λ is a
scale factor, ψ the rotation around the optical axis, θ the latitude and φ the longitude. In
(2), distribution of the sampled virtual viewpoints on a half-sphere lying on a planar patch.
Map of the transition tilts as defined in Equation 2 to the closest viewpoint (blue is 0 and
red is greater than the

√
2) for a planar patch of the pot dataset: with respect to the real

viewpoints only (3) and with respect to the additional virtual viewpoints (4). The centres of
the blue patches correspond to the viewpoint positions. We can see in (4) that most potential
viewpoints are within a limited tilt of a real or synthetic viewpoint, making it possible to
match SIFT features.

Figure 2: Virtual viewpoint positioning relative to some of the segmented patches (green
points). In the left scene, only two rings of virtual viewpoints (in green) are added as the
other potential viewpoints would have been close to existing viewpoints (in red).

where R(ψ) and R(φ) are rotation matrices, and t ≥ 1 is the transition tilt between the two
views. If one of the view is fronto-parallel, the parameters correspond to the notations of
Figure 1 (1), with t = 1/cos(θ). Parameter t expresses how much the view is flattened
out. Assuming SIFT features invariant to similarities, Equation (2) shows that, at fixed t
and φ , any λ and ψ give the same features. This motivates to position the virtual viewpoints
around the planar patch similarly to [20], that is, at (t,φ) such that t = 2m/2 (m ∈ {1,2,3})
and φ = n72◦/t (with n such that φ spans [0,360◦]). The resulting sampling can be seen
in Figure 1 (2). It should be noted that only affine cameras are considered in ASIFT [20].
This justifies that ASIFT limits φ to [0,180◦] (for symmetry reasons) and does not consider
the distance to the scene. Since we consider pinhole cameras, we have to set the distance of
the virtual camera to the planar patch. We use the average distance of the real cameras to
limit interpolation artefacts during synthesis. Since we are not interested in adding virtual
viewpoints if a real viewpoint is already available, in order to limit redundant information,
virtual viewpoints are added only if the transition tilt to one of the real viewpoints is larger
than

√
2. This is illustrated in Figure 1 (3-4).

The following section explains how to segment the scene into planar patches, each one of
them being associated with virtual viewpoints through the preceding process, as in Figure 2.

2.2 Planar segmentation
Segmentation is not an easy task because the SfM point cloud is noisy and non-uniformly
sampled. We first estimate the normals at each point, via PCA on the neighbouring points
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Figure 3: Three segmentation examples on an object-centred scene (left and middle) and a
building (right). The datasets are the book, pot and CAB datasets that can be seen in Figure 5.
Each planar patch is in a different colour. We can see that the curved surface of the pot is
correctly approximated by a set of planar patches.

as in [10]. A simple iterative RANSAC scheme is used: RANSAC (with a fitting criterion
based on both the distance between the points and the plane and the consistency of the
normals at each point, described in [24]) gives points lying on a plane, which are iteratively
removed until 90% of the model points are associated with a plane. Note that the fitting
criterion eliminates points around the edges of the scene, the normal of these points being
not consistent [5]. This robustifies the estimation of n in Equation (1).

Synthesizing the appearance of a patch far away from a virtual camera is likely to suffer
from image quantization. This typically happens when synthesizing the appearance of large
planes such as building façades. We therefore segment further the planes into smaller sets of
points included in square cells oriented along the two principal directions of the plane, and
of width equal to the average distance between a point and the cameras that reconstructed
it, in order to ensure that the local scale change induced by a homography does not vary too
much across the synthesized patch. Note that these cells are not necessarily aligned with the
scene edges. The pieces of planes obtained by this segmentation are called planar patches.

Examples of segmentations are shown in Figure 3. Virtual viewpoints are positioned
around the planar patches as in Figure 2. See also the videos pot_positioning,
tower_positioning and CAB_positioning available as supplementary materials.

3 Patch synthesis
This section describes the simulation process. The scene model is supposed to be segmented
into planar patches, each one of them being associated with a set of virtual viewpoints.

3.1 Image transformation
For each virtual viewpoint, the aspect of each planar patch is simulated with the homography
given by (1). SIFT descriptors are extracted from the simulated views and associated with
the corresponding 3D points. This in an intermediate approach between [11] where synthetic
views come from full images, and [23] (additional experiments available in [22]) where many
small overlapping patches are produced.

The remaining problem is to define from which construction view the synthetic patches
should be simulated. As a patch may not have been fully observed in a single construction
view, we may have to use several construction views. The views are selected using a greedy
approach, by iteratively selecting the construction viewpoints in which the largest number of
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Figure 4: Examples of real viewpoint selection to be used in patch synthesis.

model points belonging to the considered planar patch are visible. The stopping criterion is
that 90% of the patch points are visible from at least one of the viewpoints. A point of the
model is considered visible in a construction view if there is a descriptor extracted from this
view associated with this point in the SfM model. In all our experiments we needed at most
five views to cover 90% of the points on a planar patch.

Figure 4 shows the set of points in a planar patch and the associated construction view in
the same colour. SIFT descriptors extracted from simulated views based on the construction
view are associated with these 3D points.

3.2 Visibility from virtual viewpoints

The preceding procedure simulates the aspect of planar shapes from virtual viewpoints, but
it does not take into account potential occlusions from other parts of the scene. This means
that it could simulate the appearance of some parts of a patch from a position where they
are actually not visible. The resulting descriptors would not only unnecessarily increase the
complexity of the model, but would also increase the outlier rate in the matching stage.

We therefore impose an additional visibility constraint. The authors of [13] propose an
efficient method that only relies on 3D point location (no meshing is needed) and performs
well on point clouds with a non uniform density. The set of model points visible from
a point O is computed as follows. The model points are transformed using the so-called
flipping transformation given by:

p′ = p+2(R−||p||) p/||p|| (3)

where p is a vector from O to a point of the model and R is a smoothing parameter. Let P′ be
the set of the transformed points. The set of points visible from O belongs to the preimage
of the convex hull of P′ ∪O. It is shown in [13] that the number of visible points increases
with R. This method was originally designed for point models with noise levels much lower
than in an SfM reconstruction, which imposes us to set R carefully. To choose R, we isolate
each planar patch and run visibility tests from a fronto-parallel viewpoint for increasing R.
Noise-free points lying on a plane should all be visible; this is not the case here. We choose
R as the smallest value such that at least 90% of the points are visible.

It is worth noting that we can tolerate a few mislabelling as pose estimation is performed
with RANSAC. The gain from this step is contextual, depending on the presence of occlu-
sions in the scene. It may, however, be significant. For instance, in the pot dataset, the size of
the model goes from 160,000 descriptors to 134,000 when using this visibility constrain, see
Figure 5. All of these discarded descriptors would incorporate spurious data in the model.
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Figure 5: Sample images of five datasets and the reconstructed 3D point clouds. From left
to right: poster (17 images), book (53 images), pot (21 images), tower (21 images) and CAB
(300 images).

4 Experimental results

The experiments show that a model enriched with the proposed synthesis method leads to
more accurate poses, and even gives accurate poses when pose estimation simply fails with-
out synthesis. In addition the time needed for pose computation is reduced. The experi-
mental setup consists in estimating the pose of a query view independent from the construc-
tion views, the model being built with VisualSfM [29]. The query view is typically chosen
far away from the construction views. Poses are computed from the model using approxi-
mate nearest neighbour matching of the descriptors [21], followed by RANSAC filtering of
the query/model correspondences, the pose being eventually estimated by Direct PnP [9].
RANSAC stopping criterion is based on an online estimation of the inlier ratio as proposed
in [8],

Datasets go from a small object to a full building. The size of the scenes is limited to
a few objects or buildings, which is a realistic assumption even in city-scale environments
if a rough localization is available (through GPS for instance). Poster is a simple planar
scene. Pot and book are small object-centred scenes from [3]. Tower is a relatively simple
outdoor scene from [2] that essentially consists in two planar façades. CAB is a larger outdoor
scene from [1]. This model is significantly larger (49,000 points and 325,000 descriptors,
reconstructed from 300 images). On this latter dataset, the query views come from Google
Street View, the acquisition conditions (camera, weather, viewpoint) are thus significantly
different from the one of the construction views. In this experiment, the intrinsic camera
parameters are estimated using the method described in [26]. Figure 5 displays sample
images of the datasets (approximately 1,000 pixels wide) and the associated models.

As an illustration, Figure 6 shows 100 runs of the pose estimation for the representative
pot and tower datasets. We can see that pose estimation is significantly improved by patch
synthesis. Table 1 gives computing time (obtained on an Intel i7 quad core 2.7 GHz with 16
Gb memory). In all these experiments, the computing time for adding descriptors through
patch synthesis was smaller than the reconstruction time, in spite that our implementation of
patch synthesis is a Matlab code, while SfM is a compiled software. Note that both steps can
be done offline, when building the scene model.

While the enriched models are significantly larger than the initial ones (for instance, it
grows from 32,000 descriptors to 134,000 descriptors in pot), the pose estimation is not pro-
portionaly longer. Table 1 shows that in our experiments the computation times for matching
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Figure 6: Pose computations on the pot and tower datasets. From left to right: the con-
struction viewpoints, the query viewpoint, 100 tentative pose estimations without synthetic
patches, 100 tentative pose estimations with synthetic patches.

are only a few seconds longer when using an enriched model, with a Matlab implementation.
The reason is that the SIFT descriptors coming from synthesized patches make the inlier ra-
tio to increase, and consequently the number of RANSAC iterations to decrease. In all our
experiments, the tentative correspondences obtained using the enriched model has always a
higher inlier ratio than the ones from the initial model, this difference ranging from a 7%
increase in CAB to a 37% increase in poster.

We evaluate the accuracy of the estimated poses visually in Figure 6, and numerically in
Table 2. To measure pose accuracy we rely on the reprojection error of 3D scene edges in the
query view, which can be seen in Figure 7. These edges have been obtained by manually ex-
tracting them in the construction views and reconstructing them using multi-view stereo. The
accuracy gain ranges from slight to considerable improvements, depending on the relative
poses of the query and construction views. In Figure 7, we can see that the reprojected edges
are almost superposed when using patch synthesis, which shows the improved accuracy of
the pose. In case of strong viewpoint changes between the query and construction views
(as in poster and tower), pose estimation simply fails without patch synthesis. Additional
information is available in the supplementary file viewpoint_changes.pdf.

5 Conclusion

In this paper we proposed a method to add descriptors to a SfM model using patch synthesis,
in order to facilitate pose estimation from viewpoints not covered by construction views.
This method is not specific to the scene and is still tractable for scenes as large as buildings.
Compared to an exhaustive approach as ASIFT [20], the computational burden is limited
thanks to two ingredients. First, we add carefully selected virtual viewpoints with respect to
the geometry of the scene. Second, we only transform parts of images that can yield useful
SIFT descriptors. Experiments show that the proposed algorithms facilitate point matching
by reducing the outlier rate, and dramatically increase pose accuracy.

A continuation to this proof-of-concept study could be within tracking initialization in
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poster book pot tower CAB
SfM time 6min 11min 15min 5min 18min

synthesis time 3min 6min 10min 4min 9min
SfM model

# of descriptors 47643 225207 32568 7774 324360
matching time 2.53s 3.15s 2.65s 1.48s 7.55s

pose time 35.2 15.64s 10.17s 35.16s 8.29s
enriched model

# of descriptors 664848 887216 134484 85949 1523298
matching time 5.51s 4.60s 4.38s 3.72s 13.76s

pose time 0.06s 0.80s 0.44s 0.38s 1.30s

Table 1: Computing times for synthesis and for the different steps of pose estimation. Match-
ing times are slightly higher when using an enriched model but pose estimation is substan-
tially faster because of the higher inlier ratio in the tentative correspondences.

poster book pot tower CAB
SfM model 1175±1.72 3.47±2.31 19.79±26.70 32.92±50.27 26.94±17.23

enriched model 1.21±0.97 2.32±1.26 4.39±4.50 6.72±3.27 15.53±13.72

Table 2: Average pixel reprojection error of 3D scene edges in the query view, plus/minus
the standard deviation. The large errors for poster and tower correspond to situation where
the RANSAC/PnP step did not actually converge to a reasonable pose, as shown in Figure 6.

augmented reality applications. It would also be interesting to use the information from all
available views when synthesizing patches, using, e.g., super-resolution. We also intend to
reduce the enriched model size, using a more compact representation in the same spirit as
the visual vocabularies proposed in [11] or [12].
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[28] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and T. Pajdla. 24/7 place recognition
by view synthesis. pages 1808–1817, June 2015.

[29] C. Wu. VisualSFM: A visual structure from motion system.
http://homes.cs.washington.edu/∼ccwu/vsfm/, 2011.

[30] C. Wu, B. Clipp, X. Li, J.-M. Frahm, and M. Pollefeys. 3D model matching with
viewpoint-invariant patches (VIP). Proc. Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.


