Supplementary material

Learning Neural Network Architectures using Backpropagation

1 Properties of the method

Here we identify a few properties of our architecture selection method.

1. Non-redundancy of architecture: The learnt final architecture must not have any redundant neurons.
Removing neurons should necessarily degrade performance.

2. Local-optimality of weights: The performance of the learnt final architecture must at least be equal to a
trained neural network initialized with this final architecture.

3. Mirroring data-complexity: A ‘harder’ dataset should result in a larger model than an ‘easier’ dataset.

We intuitively observe that all these properties would automatically hold if a ‘master’ property which requires
both the architecture and the weights be globally optimal holds. Given that the optimization objective of neural
networks is highly non-convex, global optimality cannot be guaranteed. As a result, we restrict ourselves to studying
the three properties listed.

In the text that follows, we provide statements that hold for our method. These are obtained by analysing widths
of each layer of a neural network assuming that depth is never collapsed. In other words, these hold for neural
networks with a single hidden layer. Proofs are provided in the Appendix.

Non-redundancy of architecture

This is an important property that forms the main motivation for doing architecture-learning. Such a procedure can
replace the node-pruning techniques that are used to compress neural networks.

ol
Proposition 1. At convergence, the loss (£) of the proposed method over the train set satisfies 2% <0

This statement implies that change in architecture is inversely proportional to change in loss. In other words,
if the architecture grows smaller, the loss must increase. While there isn’t a strict relationship between loss and
accuracy, a high loss generally indicates worse accuracy.

Local Optimality of weights

The proposed method learns both architecture and weights. What would happen if we initialized a neural network
with this learnt architecture, and proceeded to learn only the weights? This property ensures that in both cases we
fall into a local minimum with architecture ®.

Proposition 2. Let {1 be the loss over the train set at convergence obtained by training a neural network on data
D with a fixed architecture ®. Let l5 be the loss at convergence when the neural network is trained with the proposed

i
method on data D such that it results in the same final architecture ®. Then, 8791 < € and 8792 < € for any € — 0.

Mirroring data-complexity
Characterizing data-complexity has traditionally been hard. Here, we consider the following approach.

Proposition 3. Let D1 and Dz be two datasets which produce train losses {1 and €y upon training with a fived archi-
tecture ® such that £y > . When trained with the proposed method, the final architectures ®1 and 2 (corresponding
to Dy and D) satisfy the relation ||®1|| > || P2| at convergence.

Here, D, is the ‘harder’ dataset because it produces a higher loss on the same neural network architecture. As a
result, the ‘harder’ dataset always produces a larger final architecture. We do not provide a proof for this statement.
Instead, we experimentally verify this in Section 4.2.

2 Proofs of Propositions

Let E = ¢+ MRy + AR be total objective function, where Ry is the binarizing regularizer, R,, = ||¢| is the
model complexity term. At convergence, we assume that R, = 0 as the corresponding weights are all binary or close
to binary. Let the maximum step size (due to gradient clipping) for w and d be s.

Proof of proposition 1. At convergence, we assume

— < ¢, for some € = 0.

o
or |||l o ol
96 < €
for some ¢ sufficiently small.
O

Proof of proposition 2. Let Ry, = 0 at t’ih iteration with architecture ®;. Let ®5 be the architecture at iteration
to > t; such that at iterations t; < t < t9, architecture is ®;.
= 3 an iteration t; < t < t5 such that R > s(1 — s) = s1, s being the maximum step size.

ol
Let ¢ = 8702 Let Ay be parameterized by k as follows.

Ny 81 = Ep(q) + ko where o = Ep(q—Ep(q))?
If k— oo then P(qg>)\ s1) — 0

Hence, for large enough \,, &5 = &1. After T' >> t iterations, we have

0ty 0lsy

— < d — < 1

a0, € an 96, € (1)

for some € — 0. However, if #; € R%, then 6, € R%, such that d; < dp.

Without loss of generality, let us assume that neurons corresponding to first d; weights are selected for, while the
lo

" 90(d)

equation 1, proves the assertion.

rest are inactive. As a result

14
= 0, for d € [dy,ds]). Hence, the following holds % < €. This, along with
1

O

3 Hyper-parameter selection

For effective usage of our method, we need a good set of A\s. Here, we describe how to do so practically.

First, we set A3 to a low value based on the initial widths and loss values. Recall that this value multiplies with
the number of neurons in the cost function. That is, if a network has a layer with n neurons, we get A3 x n. Hence,
if n multiplies by 10, A3 divides by 10. We used 10~° for MNIST-network and 106 for AlexNet. For a given initial
architecture, a large A3 places more emphasis on getting small models than reducing loss.

Second, we set A1 to be about ~ 2 times A3. Using a positive A3 shifts the curve to the right. By letting A3 = A1,
the curve shifts to the extreme right with the peak at x = 1. Hence if A\3 = k x A1, weset 0 < k < 1.

We simply set Ao and A4 to 1/10"" of A\; and A3 respectively.

