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Abstract

This work presents a method to achieve dense labeling in a very simple and efficient
way, faster and with more flexibility than related approaches. We use an initial super-
pixel graph and reformulate its constraints as a sparse linear system of equations, which
is efficiently solved as a linear least squares problem. We demonstrate our approach
with an interactive application for depth-of-field simulated effects based on dense depth
estimation from a single image. This kind of interactive application requires to con-
tinuously obtain a dense labeling estimation, therefore it is necessary to solve the task
with high efficiency. Our experiments show our method obtains comparable results for
a dense depth estimation against related approaches, while providing a more generic and
powerful representation of the problem. The proposed dense labeling system opens new
opportunities to design interactive applications that require dense labeling estimation of
any other image property.

1 Introduction

Plenty of problems in computer vision and image-processing applications rely on labeling
techniques. Given a set of initial values for a few pixels, the estimation process assigns the
best value for every image pixel. We find plenty of applications for this formulation, such
as obtaining depth information in panoramic images [19], semantic labeling of RGB-D im-
ages [23], assigning semantic and geometric labels in conventional images [33] or tools to
assist the user in manual image filtering and editing [14, 18]. Our work is focused on this
latter group of interactive applications. We should note that common dense labeling tech-
niques present too high computational cost for interactive applications, where the feedback
to the user must be at interactive rates. We find other editing image applications which,
using different techniques, already provide an interactive feedback to facilitate intuitive edit-
ing, e.g. to manipulate the appearance of material objects [3, 8] or to separate a video into
its reflectance and illumination intrinsic images [5].
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Figure 1: Left: Steps of the interactive D-o-F application: the user provides a few strokes
over the image and with each new edition, the application re-estimates the depth map esti-
mation and applies a depth-of-field effect. Right: Steps of our dense-labeling pipeline.

The main contribution of this work is a novel pipeline for interactive dense labeling,
which provides a framework that can be applied in any application that involves dense la-
beling and user interaction. Our approach is focused on efficient dense labeling estimation
and is particularly well suited for the use of continuous magnitudes. The dense labeling
is formulated as a linear system of equations over superpixels and then solved as a linear
least squares problem. Our experiments show that our approach is the fastest to obtain a
solution compared to related approaches while keeping comparable quality in the results.
Besides, we demonstrate how our pipeline is suitable for interactive applications developing
an interactive application for depth-of-field simulated effects from a single image, Fig. 1,
which requires a fast dense depth estimation. Our approach provides sufficient accuracy in
the results at the necessary speed to achieve a good response to the user interaction.

2 Related Work

Dense labeling. Many related works take advantage of the use of superpixels to help
with different labeling problems, such as estimating dense depth information in multiple
panoramic images [19] or assigning semantic and geometric labels in conventional im-
ages [33]. Assigning the labels according to superpixels rather than individual pixels allows
us to reduce the complexity of the dense-labeling optimization although implicitly introduces
an accuracy penalty. Markov Random Fields (MRF) are common ingredient on solutions for
dense labeling problems [30] but they still present too high computational cost to achieve
results at interactive rates. As our approach, MRF superpixel-based approaches [19, 23, 33]
or more efficient recent work [7], follow the same aim to improve the execution time. Our
formulation is less restrictive and our experiments prove that we achieve a faster response.
Another important group of dense labeling solutions is inspired by the Random Walker (RW)
algorithm [9, 27, 32]. The RW algorithm can be used in an an interactive segmentation
tool [11] where the user marks a few pixels with an arbitrary number of labels. This tech-
nique computes the probability of each label for each pixel as the probability of a random
walk starting at the pixel that first reaches a seed with that label. All probabilities may be
computed analytically by solving a system of linear equations and therefore, it can be slow
for user interaction when a high number of labels is used. We find multiple works towards
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efficient solutions, based on offline pre-computation [2], or on the use of superpixels [10].

As opposed to typical dense labeling formulations, which deal with a discrete label set,
our approach is designed to represent continuous magnitudes. Then, our approach is more
related to complex MRF modifications [28, 35] or works where the Random Walker proba-
bility has been used as a continuous label [21].

Computer vision tasks with a human-in-the-loop. Human-in-the-loop approaches
have been shown very successful in a large variety of computer vision problems. We find in-
cremental learning systems from the user input, for tasks such as fine grained categorization
of conventional image content [34] or activity recognition [17], and crowdsourcing based
applications, such as medical applications built from crowdsourced human knowledge [22].
In both cases, as well as in our work, each user input is a very small piece of information
that is not enough on its own to solve the problem, but integrated in an automatic system
facilitates an efficient and high quality solution.

Besides the general problem of dense labeling, our work is also related to depth esti-
mation from a single image. Using a single-view to generate depth information is a very
challenging task in computer vision which has seen many advances in the last years [12, 15,
24, 29]. However, our algorithm provides a tool to obtain dense depth information but in
very different settings, interactive applications with a human-in-the-loop. Differently from
these works, we aim to achieve a dense depth labeling without any prior model assumed
or learned. We seek to infer the information just from the user interaction, as targeted in
related previous interactive solutions for example towards image segmentation [20] or depth
labeling [16]. Our motivation is that many final applications using dense depth maps are
actually interactive image editing or modeling applications, such as the depth-of-field filter
application demonstrated as part of this work.

3 Dense labeling algorithm

This section explains our proposed interactive dense labeling. Right Fig. 1 shows a summary
of its main steps.

3.1 Problem formulation.

We model the image as a graph, where the set of nodes N are the superpixels and the edges
E represent the established relationships between superpixels. Given a set of labels L, a
dense-labeling problem consists in assigning a label, [ € L, to each superpixel in the image.
Assigning a label to a superpixel is equivalent to assigning the same label to all pixels inside
the superpixel. Given this representation, we define a linear system of equations that can be
solved at interactive rates, leading to the desired dense labeling from a sparse input.

While standard labeling formulation forces to choose a discrete set of labels, our for-
mulation considers continuous label sets, e.g., we use real numbers in [0,1]. Our proposed
solution to this labeling problem is based on a linear system of equations where the unknowns
are the labels. Each equation contributes to the label value of one or more superpixels. A
unary equation assigns a specific value as the label of a superpixel. A binary equation estab-
lishes a relation between the label of two superpixels connected in the graph. Note that linear
equations involving three or more unknowns could be trivially formulated and included.
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We generate all the equations to compose a linear system, Ax = b, where, A and b contain
coefficients and independent terms respectively from all linear equations and x is the labeling
solution. Since the number of equations and unknown is usually different, the system is
turned into (ATA)x = ATb, where we find solution with a common least squares method,
minimizing the error. The (AT A) matrix is symmetric by definition and positive semidefinite.
Therefore, the equation can be solved applying Cholesky decomposition, specifically, LDLT
decomposition, with the advantage of being fast and numerically stable.

This formulation opens the possibility of posing multiple unary equations per superpixel
or multiple binary equations per edge, so the graph is in practice a multigraph. This could
even lead to contradictory equations, in the sense that the corresponding coefficients of two
equations may lead to different solutions if considered independently. This is not a problem
for our solver, as it is not exact but a linear least squares minimization.

3.2 Initialization and interactive pipeline steps

The presented minimization formulation has the advantage of being linear. This allows us to
split the system Ax = b in the equivalent:

() += ()

The proposed pipeline (Fig. 1) enables a relatively expensive initialization step, but helps to
minimize the calculations that depend on each user interaction, reaching interactive rates.

The initialization step first obtains superpixels and generates A, and b,. A, and b,
contain the equations that are independent of the user interaction and therefore are only
once. The included equations are just dependent on pixel positions and values, in particular,
they correspond to the binary equations described in next Sec. 4.1.

The interactive step generates the rest of the system, matrix A; and vector b;, which
contains the equations related to user interactions (the unary equations of Sec. 4.1.)

4 Application of the interactive dense labeling

The application described in this section is a proof of the use of our interactive dense label-
ing pipeline for interactive real applications. It simulates depth-of-field effects for a single
image, which are generated from the depth estimation interactively updated by a human.
Figure 3 and the supplementary material show results from our interactive application. As
input, the user indicates, by means of strokes, some region of the picture in the foreground
(blue) and in the background (different ranges of green, the darker, the further). Each user
stroke is associated to a depth value. The closest objects are assigned with a depth value 1,
while objects marked as the furthest get depth value 0. Each pixel affected by a user stroke
generates an unary equation on the superpixel where it is contained. These equations are
added to the system and combined with the pre-computed binary equations, and the system
is efficiently solved to provide a dense depth map. Once the depth map is estimated, the
user can choose the focus point, and the simulated image is generated by applying a variable
Gaussian blur filter. All the process is interactive, hence the user can refine the input and get
immediate feedback of the filter changes.



CAMBRA ET AL.: DENSE LABELING WITH USER INTERACTION 5

4.1 Steps to estimate a dense depth map from user interaction.

Our input is the original image and a sparse set of user-provided approximate depth values.
The output of the dense-labeling is a depth map that we later use to apply the Depth of Field
effect.

Superpixel segmentation. We considere that each superpixel has a single depth value. The
segmentation used is independent to our pipeline and any other implementation could be
used. We chose to use the algorithm SLIC [1], which groups pixels based on color proper-
ties. The only parameter used for this segmentation algorithm is the approximate number
of superpixels. This number adjusts the superpixel size depending on the image resolution.
The number of superpixels defines the number of unknowns in the linear system (number
of depth labels) and therefore the size of the problem. As a consequence, the number of
superpixels influences the speed of the solver at the interactive stage of the algorithm.

Binary equations. As we mentioned before, these equations are grouped into the initializa-
tion step (A, and b,). We establish binary relationship between depth values of connected
superpixels. We consider two superpixels are connected following 8-neighbors connectivity.
Given two connected superpixels p and g, their binary:

wp(lp —1g) =0, 2)

where [, and [, are the unknown depth values (labels) of superpixels p and g respectively.
Note that all binary equations tend to label equally neighboring superpixels. Therefore, we
add a preconditioning factor wy, to prioritize the connections whose border pixel colors are
similar in the CIE-Lab color space and secondly to limit the label propagation across the
object boundaries. We assume for instance that neighbouring superpixels with similar color
belong to the same object. Then, in our particular problem, they have high probability to be
at the same depth. This factor wy, is defined as:

- We if dpq < Dmax
P71 —we otherwise,

3)

where w, € [0, 1], and Dyax is set experimentally to 0.05. Distance d,, represents the color
similarity between the boundary pixels of superpixels p and g. The Euclidean distance on
each channel. The mean of each channel is normalized and obtained from the pixels from p
which are in the boundary with g. w, modulates the effect of the CIE-Lab color similarity
over the depth propagation. Lower values of w, tend to ignore color boundaries and therefore
blur the whole depth map, while higher values (close to 1) may isolate certain superpixels.
We experimentally set this value to w. = 0.99.

Unary equations. The unary equations link the user input with superpixel depths which are
grouped into the interactive step (A; and b;). With each user edition, we add new unary equa-
tions. Our depth-of-field application examples use initial values from user strokes, and each
stroke has associated a real value in [0,1]. In particular, our application provides 5 buttons so
the user can choose the desired depth for each stroke. We use uniformly distributed values
for the 5 buttons. For each depth value z; applied to a pixel i that belongs to a superpixel p
(i € p) we include the following equation into the system:

lp = Zi, (4)
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where [, is the (still) unknown depth label of the superpixel. When a user adds a stroke, our
algorithm does not guarantee that the pixels underneath such stroke will keep the value after
the propagation, due to the final system being solved as a linear least squares minimization.
Each user stroke can affect several superpixels or different strokes can affect the same super-
pixel, generating contradictory (or redundant) superpixel constraints. Then, the user input
can include many equations per superpixel (by applying larger strokes) which in practice
enforces that depth value, while smaller strokes lead to fewer equations and therefore their
overall weight on the system is smaller. This is an expected and desired behavior, which is
not as straightforward in other labeling formulations. After each stroke the system is inter-
actively updated and a dense depth map is obtained.

Global preconditioning. The global effect of unary and binary equations is image-dependent
and rather unpredictable. We force a global system preconditioning by multiplying both sides
of unary equations (4) by 3“ and both sides of binary equations (2) by 1;;7”“, where #u and
#b are the total number of unary and binary equations and w, € [0, 1] is a user parameter that
controls the weight of unary equations over binary ones. A value of w, = 0.4 has been found

appropriate and is used on all the results.

5 Experiments

This section evaluates the proposed interactive application and presents a quantitative and
exhaustive evaluation of the performance of our pipeline.

5.1 System performance and parameters.

Execution time. An essential goal of our labeling approach is to guarantee the response time
requirements for applications that interact with a user. Table 1 shows the execution time of
each pipeline step in a typical execution measured in a desktop computer (Intel Core 15 2,5
GHz) with a sample image.

The initialization steps are executed only once at the beginning, while the image is being
loaded to the application. The superpixel segmentation is the most expensive step from this
stage, although the segmentation used is independent from our pipeline and any other imple-
mentation could be used. The number of superpixels affects directly the execution time to
solve our system and therefore the execution time of the interactive loop. However, we limit
the maximum number of superpixels and keep the interactivity of the system independent of
the image size used. We set this maximum number of superpixels to 600. As we can see in
Table. 1, this value allows our system to be interactive even with high resolution images.

The interactive loop steps (building new unary equations according to new user input,
solving the system and re-estimating the depth map) are executed after each user interaction.
All these steps are executed in less than a second (670 milliseconds), enough for this appli-
cation to respond to the user at interactive rates.

Influence of Parameters in the Performance. As described in previous Sections 3 and 4,
our formulation includes some control parameters which have been set experimentally to
provide the best trade-off for our application (w,=0.4, Dyax=0.04 or w.=0.99). Note that
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Table 1: Typical execution time per step with an image of 2008x1340. Percentage values
represent the contribution of each pipeline step over the total runtime.

Step Time Percentage Step Time Percentage
(seconds) (seconds)
Initialization stage Interactive loop
1. Superpixel segmentation 3. Add unary equations
(532 superpixels) 11.59 75 % (1517 equations) 0.04 0.25 %
2. Add binary equations
(234 equations) 3.25 21 % 4. Solve system 0.42 2.5 %
5. Build depth map 0.21 1.25 %
Total: 14.84 Total: 0.67

these recommended values correspond to our particular case of dense depth estimation. If
the pipeline is used for estimating a different real magnitude they would probably change.
The supplementary material includes the analysis run to determine these values.

5.2 Interactive dense labeling evaluation

We focus on the part of the pipeline that estimates the labeling (step 4 from Fig. 1), since
it is the only common part in all the approaches compared. We compare our results against
state-of-art dense labeling approaches using two very different inputs (Fig. 2): a dense but
unreliable input labeling obtained automatically from two stereo images and a sparse but
more reliable input labeling obtained from a few user strokes. Our work is focused on gen-
erating a good estimation using just a few pieces of information from the user. However,
MRF-based methods are focused on obtaining an accurate solution using an available initial
estimation, typically distributed all over the image. Therefore, they are suboptimal when a
very sparse input is used, as we confirmed with the results in this section.

(a) Dense - automatic (b) Sparse - interactive
Left Right
; _ Superpixel affected

User strokes
by user strokes

Dense automatic input

Figure 2: Types of labelling initialization used in our experiments.

Reference labeled data used. For these labeling experiments we use well known public
data [25] [26] designed to evaluate stereo algorithms. In this dataset the ground truth labels
represent the disparity between corresponding pixels from two images. We chose this dataset
because it had public results for recent dense labeling related methods.
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State-of-art approaches considered. We compare our algorithm to the following state-
of-the-art algorithms described in a well known comparative of MRF-based dense labeling
approaches [30]: iterated conditional modes (ICM) [4]; Graph Cut (GC) with a-expansion
moves (Expansion) and o 3-swap moves (swap) [6]; two implementations (BP-S and BP-M)
of loopy belief propagation [31], and Sequential three-re-weighted message passing (TRW-
S) [13]. Besides, since our focus is on speed and interactive properties, we include the
recently presented block coordinate descent algorithm (BCD) [7], which was developed with
an emphasis on speed, and a Random Walk based approach, the implementation provided
by [11], which was designed as an interactive segmentation tool. This formulation is very
close to ours and it is also based on a linear equation system. Note that both MRF and RW
implementations are based on pixel-wise formulations, while our work is superpixel-based,
therefore it has a disadvantage over pixel-wise techniques in terms of accuracy but presents
higher efficiency without much penalization in accuracy, as we can see in the following
experiments.

We also include a superpixel-based version of GC, which is the only related method
whose available implementation can be directly adjusted to support a superpixel formula-
tion. We adapt its MRF-graph edges to use superpixels as nodes, as our approach does, and
adapt its MRF unary and binary cost functions to include the same constraints as our unary
and binary equations.

Error measure. To compare the quality of the different algorithms solutions, we measure
the error obtained in each solution as the mean of the differences (or mean error) between
each pixel in the solution and the same pixel in the ground truth.

Dense labeling input. As we mentioned, the MRF based methods use all the initialization
information they can extract from two stereo images, by running an automatic disparity esti-
mation algorithm for stereo. In order to evaluate our pipeline and the RW approach in similar
settings than the other MRF studied approaches we need an initial disparity estimation. As
initial disparity map, we use the same initial map utilized in the ICM algorithm [30], Fig. 2
(a). Note that this noisy and unreliable input is not the target case for our method.

Sparse user input. In this test, the input for all methods evaluated is the same set of pixels
initialized from user strokes, Fig. 2 (b). As the user associates each pixel stroke with a depth
value, we can create a sparse initial depth map to initialize all the methods compared here.
In this experiment, the user input consists on 5 different levels of depth assigned to different
user strokes. Note that the input image in Fig. 2 (b) highlights the whole superpixels affected
by user strokes, but actually we are only including one unary equation per pixel affected.

Discussion of the results. Table 2 shows error and execution time (measured on a standard
desktop machine Intel Core 15 2,5 GHz) for the dense labeling estimation in three of the tests
run. In the supplementary material, we show the final disparity estimation obtained by each
of the evaluated methods.

As previously mentioned, MRF-based methods are focused on obtaining an accurate
solution using an dense initial estimation and, as we can see in Table 2 (a), these methods
obtain the best estimation in terms of accuracy. However, our algorithm is faster than any of
the other algorithms in this comparative, while keeping comparable accuracy than the fastest
ones (which still are one order of magnitude slower). Note that the direct comparison with
RW implementation is somehow unfair as the available code is implemented in Matlab, while
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Table 2: Execution time (seconds) and mean error (err) for dense labeling obtained for 3
test images (name and resolution in each column) with automatic input (a) and user input
(b) initialization. #Labels: number of disparity levels considered on each test.

(a) AUTOMATIC DENSE INPUT (b) SPARSE USER INPUT
Tsukuba Venus Teddy Tsukuba Venus Teddy
(384x288) (434x383) (450x375) (384x288) (434x383) (450x375)
Method #Labels=16 #Labels=20 #Labels=60 Method #Labels=5 #Labels=5 #Labels=5
time [ err time | err time | err time | err time | err time [ err
Pixel-based Pixel-based
ICM [4] 0.520 0.12 0.460 0.10 1.900 0.13 ICM [4] N/A N/A N/A N/A N/A N/A
Expansion [6] 2.220 0.02 6.940 0.02 19.90 0.05 Expansion [6] N/A N/A N/A N/A N/A N/A
Swap [6] 2.250 0.02 7.010 0.02 12.60 0.05 Swap [6] N/A N/A N/A N/A N/A N/A
TRW-S [13] 8.840 0.02 115.0 0.02 158.0 0.05 TRW-S [13] N/A N/A N/A N/A N/A N/A
BP-S [31] 1.370 0.02 8.690 0.03 21.20 0.05 BP-S [31] N/A N/A N/A N/A N/A N/A
BP-M [31] 13.30 0.02 — — 193.0 0.05 BP-M [31] 24.40 0.14 34.20 0.09 35.10 0.18
BCD [7] 0.920 0.09 1.500 0.17 2.760 0.08 BCD [7] — — — — — —
RW [11] 0.200% | 0.12 0.400%] 0.20 0.600%| 0.16 RW [11] 0.500%| 0.13 0.600% | 0.20 0.700% | 0.09
Superpixel-based Superpixel-based
Expansion 3.090 0.06 6.320 0.10 6.210 0.08 Expansion 4.170 0.06 6.370 0.14 7.960 0.09
Ours 0.002 0.06 0.005 0.10 0.005 0.09 Ours 0.002 0.06 0.005 0.15 0.005 0.06
—: the method did not converge to a solution —: can’t provide to available implementation.
*: execution time is measured in Matlab. *: execution time is measured in Matlab.

the rest use C++, so we could expect the speed up of around one order of magnitude typically
observed between these two environments. Theoretically, the RW [11] requires solving a
linear system per label in the solution, while our approach only solves one, independently of
the number of labels. For example, in tests of Table 2 (b) where we use five labels, the RW
solver would be around five times slower than our approach.

Table 2 (b) shows our approach obtains also the best estimation in terms of accuracy,
although we could say that the three best approaches obtained results of comparable qual-
ity. We could say that by definition, superpixel-based approaches are typically less accurate
than pixel-based methods but faster to compute. Our work is superpixel-based and therefore
has advantage in terms of time cost over pixel-wise techniques. However, this time advan-
tage 1s achieved at a small sacrifice on accuracy, as it can be seen from the quality of final
estimations obtained in the Table 2.

An important advantage of our method is the flexibility. First, as we use a continuous
label set, we do not need to choose the number of possible final labels a priori. Second,
only MRF-based methods can include in the final solution intermediate label values like us
(but at much higher cost), but RW can only assign a choice among the input labels, i.e., if
five depth values are given as input, only those five values will compose the final solution.
Another interesting advantage of our method is that the execution time does not fluctuate a
lot with image dimensions or number of labels, since is not directly depending on any of
those magnitudes, but on the number of superpixels.

5.3 Interactive depth-of-field application examples

Figure 3 shows examples of the results obtained with our application (more results on sup-
plementary material). The proposed pipeline uses our interactive dense labeling estimation
as key step, in this case depth estimation, which has good quality compared to state of the
art methods. The final result of the interactive pipeline and its quality are subjective to the
user so we can only show qualitative evaluation of this application. The video included
demonstrates the real time execution and behavior of the application.
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(a) Input Image (b) User Strokes (c) Depth map (d) Refocused images

Figure 3: Results from interactive depth-of-field application. With a few user strokes (b)
over the original image (a), the user can quickly get different depth-of-field effects in the
image (d). The estimated depth map (c) is used to generate the depth-of-field effects.

6 Conclusions

We have developed an efficient approach for dense labeling based on a superpixel linear
least squares formulation. As demonstration of the suitability of our approach for interactive
applications, we have presented an interactive application that, given a single image without
any additional information, enables an unskilled user to easily generate synthetic depth-of-
field blur effect on the image. The depth-of-field post-processing requires a per-pixel depth
value, which is obtained from a very sparse and approximate depth user input. The proposed
dense labeling technique has great flexibility to model this problem. Since our dense labeling
system models the problem by means of linear equations, the connectivity graph model can
be easily augmented without much computational cost.

Furthermore, our formulation has the advantage of providing an interactive solver, which
is key to applications such as our proposed depth-of-field editor.

Our accuracy is limited by the number of superpixels and by the accuracy of the input,
which, coming from the user, it is probably rather approximate. Still, we have shown that
we yield results which are accurate enough for many applications and often comparable to
other slower state of the art methods. Besides, since we target an interactive technique the
user can always refine and improve the input iteratively.

We believe that our approach will inspire future research for interactive editing appli-
cations based on dense labeling. The interactivity rates of our approach, together with the
aforementioned expanded flexibility, provide great potential for other applications dealing
with tasks such as semantic labeling, image restoration, intrinsic imaging or inpainting.
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