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Abstract

Convolutional Neural Networks (CNNs) were recently shown to provide state-of-the-
art results for object category viewpoint estimation. However different ways of formulat-
ing this problem have been proposed and the competing approaches have been explored
with very different design choices. This paper presents a comparison of these approaches
in a unified setting as well as a detailed analysis of the key factors that impact perfor-
mance. Followingly, we present a new joint training method with the detection task and
demonstrate its benefit. We also highlight the superiority of classification approaches
over regression approaches, quantify the benefits of deeper architectures and extended
training data, and demonstrate that synthetic data is beneficial even when using ImageNet
training data. By combining all these elements, we demonstrate an improvement of ap-
proximately 5% mAVP over previous state-of-the-art results on the Pascal3D+ dataset
[29]. In particular for their most challenging 24 view classification task we improve the
results from 31.1% to 36.1% mAVP.

1 Introduction
Joint object detection and viewpoint estimation is a long-standing problem in computer vi-
sion. While it was initially tackled for single objects with known 3D models [13, 18, 25], it
was progressively investigated for complete object categories. The interest in this problem
has recently increased both by the availability of the Pascal3D+ dataset [29], which provides
a standard way to compare algorithms on diverse classes, and by the improved performance
of object detection, which encouraged researchers to focus on extracting more complex in-
formation from the images than the position of objects.

Convolutional Neural Networks were recently applied successfully to this task of object
category pose estimation [27, 28], leading to large improvements of state-of-the-art results
on the Pascal3D+ benchmark. However many elements play an important role in the quality
of these results, which have not yet been fully analyzed. In particular, several approaches
have been proposed, such as a regression approach with joint training for detection [20, 21],
a direct viewpoint classification [28], and a geometric structure aware fine-grained viewpoint
classification [27], where the authors modify the classification objective to take into account
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the uncertainty of the annotations and encode implicitly the topology of the pose space.
These papers however differ in a number of other ways, such as the training data or the
network architecture they use, making it difficult to compare performances. We explore
systematically the essential design choices for a CNN-based approach to pose estimation and
we demonstrate that a number of elements influence the performance of the final algorithm
in an important way.

Contributions

In this paper, we study several factors that affect performance for the task of joint object
detection and pose estimation with CNNs. Using the best design options, we rationally define
an effective method to integrate detection and viewpoint estimation, quantify its benefits, as
well as the boost given by deeper networks and more training data, including data from
ImageNet and synthetic data. We demonstrate that the combination of all these elements
leads to an important improvement over state-of-the-art results on Pascal3D+, from 31.1%
to 36.1% AVP in the case of the most challenging 24 viewpoints classification. While several
of the elements that we employ have been used in previous work [21, 27, 28], we know of
no systematic study of their respective and combined effect, resulting in an absence of clear
good practices for viewpoint estimation and sub-optimal performances.

Related work

Convolutional Neural Networks. While convolutional neural network have a long his-
tory in computer vision (e.g. [15]), their use has been generalized only in 2012 after the
demonstration of their benefits by Krizhevsky et al. [14] on the ImageNet large-scale visual
recognition challenge [4]. Since then, they have been used to increase performances on many
vision tasks.

This has been true in particular for object detection, where the R-CNN technique of
Girshick et al. [8] provided an important improvement over previous methods on the Pascal
VOC dataset [5]. Relying on an independent method to provide bounding box proposals for
the objects in the image, R-CNN fine-tunes a network pre-trained on ImageNet to classify
these proposal as objects or background. This method has then been improved in several
ways, in particular using better network architectures [11], better bounding box proposals
[24] and a better sharing of the computations inside an image [7, 10].

Viewpoint estimation. Rigid object viewpoint estimation was first tackled in the case of
object instances with known 3D models, together with their detection [1, 13, 16, 17, 18, 25].
These approaches were extended to object categories detection using either extensions of
Deformable Part Models (DPM) [6, 9, 12, 23], parametric models [30, 31] or large 3D
instances collections [2, 27].

With the advent of Pascal3D+ dataset [29], which extends Pascal VOC dataset [5] by
aligning a set of 3D CAD models for 12 rigid object classes, learning-based approaches us-
ing only on example images became possible and proved their superior performance. For
example, Xiang et al. [29] extended the method of [22], which uses an adaptation of DPM
with 3D constraints to estimate the pose. CNN-based approaches, which were until the avail-
ability of the Pascal3D+ data limited to special cases such as faces [20] and small datasets
[21], also began to be applied to this problem at a larger scale. In [19], we explored different



F. MASSA ET AL.: CRAFTING A MULTI-TASK CNN FOR VIEWPOINT ESTIMATION 3

pose representations and showed the interest of joint training using AlexNet [14] and Pascal
VOC [5] data. [28] used a simple classification approach with the VGG16 network [26] and
annotations for ImageNet objects and established the current state-of-the-art on Pascal3D+.
[27] introduced a discrete but fine-grained formulation of the pose estimation which takes
into account the geometry of the pose space, and demonstrate using AlexNet that adding
rendered CAD models could improve the results over using Pascal VOC data alone.

2 Overview
We focus on the problem of detecting and estimating the pose of objects in images, as defined
by the Pascal3D+ challenge Average Viewpoint Precision (AVP) metric. In particular, we
focus on the estimation of the azimuthal angle. For object detection, we use the standard
Fast R-CNN framework [7], which relies on region proposal but is significantly faster than
the original R-CNN [8]. In addition, we associate a viewpoint to each bounding box and for
each object class. Indeed, since viewpoint conventions may not be coherent for the different
classes, we learn a different estimator for each class. However, to avoid having to learn one
network per class, we share all but the last layer of the network between the different classes.

In Section 3, we first discuss different approaches to viewpoint prediction with CNNs
and in particular the differences between regression and classification approaches. Then in
Section 4, we introduce different ways to integrate the viewpoint estimation and the detection
problem. Finally, in Section 5 we present the results of the different methods as well as a
detailed analysis of different factors that impact performance.

Notations. We call Ns be the number of training samples and Nc the number of object
classes. For i ∈ {1, ...,Ns} we associate to the i-th training sample xi its azimuthal angle
θ i ∈ [0,2π[, its class ci ∈ {1, ...,Nc} and the output of the network with parameters w, f w(xi).
The viewpoints are often discretized and we call Nv the number of bins, and θ̃ i ∈ {1, ...,Nv}
the bin that includes θ i. We use subscripts to denote the elements of a tensor; for example,
f w(xi)k,l is the element (k, l) from tensor f w(xi).

3 Approaches for viewpoint estimation
In this section, we assume the bounding box and the class of the objects are known and we
focus on the different approaches to estimate their pose. Section 3.1 first discusses the design
of regression approaches. Section 3.2 then presents two variants of classification approaches.
The intuition behind these different approaches are visualized on Figure 1.

3.1 Viewpoint estimation as regression

The azimuth angle of a viewpoint being a continuous quantity, it is natural to tackle pose
estimation as a regression problem. The choice of the pose representation F(θ) of an az-
imuthal angle θ is of course crucial for the effectiveness of this regression. Indeed, if we
simply consider F(θ) = θ , the periodicity of the pose is not taken into account. Thus, as
highlighted in [20], a good pose representation F(θ) satisfies the following properties: (a) it
is invariant to the periodicity of the angle θ , and (b) it is analytically invertible.

We explore two representations which satisfy both properties:
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(a) 2D regression (b) 3D regression (c) Direct classification (d) Geom. structure
aware classification

Figure 1: Different approaches to orientation prediction discussed in this paper. The target
for each approach is visualized in red. For the regression approaches, the possible values
of the targets lie on a line. For the classification approaches, the predictions correspond to
probability distributions on a discrete set.

(i) F(θ) =
[
cos(θ), sin(θ)

]
, probably the simplest way to represent orientations, used

for example in [21];

(ii) F(θ) =
[
cos
(
θ − π

3

)
, cos(θ) , cos

(
θ + π

3

)]
, a formulation which was presented in

[20], and that has a higher dimensionality than the previous one, allowing more flexi-
bility for the network to better capture the pose information.

These representations have different output dimensionality Nd , respectively 2 and 3, and we
designate the associated regressions by regression 2D and regression 3D respectively. Since
we treat the regression independently for each class, the outputs f w(x) of the network that
we train for pose estimation have values in RNc×Nd and we designate by f w(x)c,k the angular
element k of the output for class c.

For training the regression with these representations, we used the Huber loss (also
known as Smooth L1) on each component of the pose representation F(θ). It is known
to be more robust to outliers than the Euclidean loss and provides much better results in our
experiments. Our regression loss can then be written:

Lreg(w) =
Ns

∑
i=1

Nd

∑
k=1

H( f w(xi)ci,k−F(θ i)k) (1)

with H the Huber loss. Given the output f w(x)c,• of the network for a sample x of class
c, we can estimate its pose simply by computing the pose of the closest point on the curve
described by F (cf. Figure 1). Other regression approaches and loss are discussed in [19] but
lead to lower performances.

3.2 Viewpoint estimation as classification
As pointed out by [27], the main limitation of a regression approach to viewpoint estimation
is that it cannot represent well the ambiguities that may exist between different viewpoints.
Indeed, objects such as a table have symmetries or near symmetries that make the viewpoint
estimation problem intrinsically ambiguous, and this ambiguity is not well handled by the
representations discussed in the previous paragraph. One solution to this problem is to dis-
cretize the pose space and predict a probability for each orientation bin, thus formulating
the problem as one of classification. Note that a similar difficulty is found in the problem of
keypoint prediction, for which the similar solution of predicting a heat map for each keypoint
instead of predicting directly its position has proven successful [28].
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In the case of a classification approach, the output of the network belongs to RNc×Nv and
each value can be interpreted as a log-probability. We write f w(x)c,v the value corresponding
to the orientation bin v for an input x of class c.

3.2.1 Direct classification

The approach successfully applied in [28] is to simply predict, for each class independently,
the bin in which the orientation of the object falls. This classification problem can be ad-
dressed for each object class with the standard cross-entropy loss:

Lclassif(w) =−
Ns

∑
i=1

log

(
exp( f w(xi)ci,θ̃ i)

∑Nv
v=1 exp( f w(xi)ci,v)

)
(2)

At test time, the predicted angular bin θ̂(x,c) for an input x of class c is given by

θ̂(x,c) = argmax
v∈{1,...,Nv}

f w(x)c,v (3)

3.2.2 Geometric structure aware classification

The drawback of the previous classification approach is that it learns to predict the poses
without using explicitly the continuity between close viewpoints. Two neighboring bins
have indeed a lot in common. This geometrical information may be especially important for
fine-grained orientation prediction, where only few examples per bin are available.

A solution to this problem was proposed in [27]. The authors finely discretize the orien-
tations in Nv = 360 bins and consider the angle estimation as a classification problem, but
adapt the loss to include a structured relation between neighboring bins and penalize less
angle errors that are smaller:

Lgeom(w) =−
Ns

∑
i=1

Nv

∑
v=1

exp
(−d(v, θ̃ i)

σ

)
log

(
exp( f w(xi)ci,v)

∑Nv
v=1 exp( f w(xi)ci,v)

)
(4)

where d(v, θ̃ i) is the distance between the centers of the two bins v and θ̃ i, and σ is a param-
eter controlling how much similarity is enforced between neighboring bins. Following [27],
we use σ = 3 for Nv = 360. The inference is done as in Equation (3).

4 Joint detection and pose estimation
The methods presented in the previous section assume that the object detector is already
trained and kept independent from the pose estimator. Since object detection and pose esti-
mation relies on related information, we expect a benefit from training them jointly. We thus
present extensions of the methods from Section 3 to perform this joint training.

4.1 Joint model with regression
Two main approaches can be considered to extend the regression approach of Section 3.1
to jointly perform detection. The first one, described in [20] is to encode respectively the
presence or absence of an object by a point close or far from the regression line described
by F in the space where the regression is performed. An alternative approach, discussed
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in [21], is to add an output to the regression network specifically dedicated to detection.
The loss used to train the network can then be decomposed into two terms: a classification
loss Ldet(w), which is independent on the pose, and a regression loss Lreg(w) which takes
into account only the pose estimation. Since state-of-the-art performance for detection are
obtained using a classification loss, we selected the second option in the following.

Our network thus has two outputs: f w,det(x) ∈ RNc+1 for the detection part (predicting
probabilities for each of the Nc classes and the background class), and f w,pose(x) ∈ RNc×Nd

for the pose estimation part. The multi-task loss for joint classification and regression-based
pose estimation writes as follows:

Lj-reg(w) = Ldet(w)+λLreg(w) (5)

We define Lreg exactly as in Equation (1), using the pose estimation output of the network
f w,pose(x). The detection loss Ldet is the standard cross-entropy loss for detection, using the
detection part of the network output f w,det(x). We set the balancing parameter λ = 1 in our
experiments.

Also, we share the weights of the detection and pose estimation network only up to the
pool5 layer. This is essential to obtain a good performance, as the regression and classifica-
tion losses are different enough that sharing more weights leads to much worse results.

4.2 Joint model with classification

A similar approach, separating two branches of the network, can be applied for classification.
However, we introduce a new simpler and parameter-free way to perform jointly detection
and pose estimation in a classification setup. Indeed, one can simply add a component,
associated to the background patches, to the output vector of the pose estimation setup of
Section 3.2 and normalize it globally, rather than for each class independently as in Equa-
tion (2). Each value is then interpreted as a log probability of the object being of one class
and in a given orientation bin, rather than the conditional probability of the object being in a
given orientation bin knowing its class. To obtain the probability of the object to belong to
one class, one can simply sum the probabilities corresponding to all the bins for this class.

Similar to Section 3.2, we write f w,obj(x)c,v ∈ RNc×Nv the value of the network out-
put corresponding to the orientation bin v for an input x of class c. We additionally write
f w,bg(x) ∈ R its value corresponding to the background and associate a class ci = 0 to the
elements xi in the background. The loss, which derives from the cross-entropy, writes:

Lj-classif(w) =−
Ns

∑
i=1

1ci=0 log

(
exp( f w,bg(xi))

exp( f w,bg(xi))+∑Nc
c=1 ∑Nv

v=1 exp( f w,obj(xi)c,v)

)

−
Ns

∑
i=1

1ci 6=0 log

(
exp( f w,obj(xi)ci,θ̃ i)

exp( f w,bg(xi))+∑Nc
c=1 ∑Nv

v=1 exp( f w,obj(xi)c,v)

)
(6)

At inference, the score associated to the detection of an object x for class c is

S(x,c) =
∑Nv

v=1 exp( f w,obj(x)c,v)

exp( f w,bg(x))+∑Nc
c′=1 ∑Nv

v=1 exp( f w,obj(x)c′,v)
(7)
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Table 1: Different approaches for pose estimation with AlexNet architecture, Pascal VOC
2012 data, and using a fixed detector

Method mAP mAVP24
Regression 2D 51.6 13.9
Regression 3D 51.6 15.7

Direct classification 51.6 19.3
Geometric structure aware classification 51.6 18.4

5 Experiments

We now present experiments comparing the different approaches for pose estimation which
were presented in the previous sections. Our experiments are based on the Fast R-CNN
object detection framework [7], with Deep Mask [24] bounding boxes proposals.

We trained and evaluated our models using the Pascal3D+ dataset [29], which contains
pose annotations for the training and validation images from Pascal VOC 2012 [5] for 12
rigid classes, as well as for a subset of ImageNet [4]. We also extended the training data
by adding the synthetic images from [27]. The evaluation metric we used is the Average
Viewpoint Precision (AVP) associated to Pascal3D, which is very similar to the standard
Average Precision (AP) metric used in detection tasks, but which considers as positive only
the detections for which the viewpoint estimate is correct. More precisely, the viewpoints are
discretized into K bins and the viewpoint estimate is considered correct if it falls in the same
bin as the ground-truth annotation. We focus on the AVP24 metric, which discretizes the
orientation into K = 24 bins and is the most fine-grained of the Pascal3D+ challenge [29].
We also consider the mean AP (mAP) and mean AVP (mAVP) over all classes.

5.1 Training details

We fine-tuned our networks, starting from a network trained for ImageNet classification,
using Stochastic Gradient Descent with a momentum of 0.9 and a weight decay of 0.0005.
We augment all datasets with the horizontally-flipped versions of each image, flipping the
target orientations accordingly. During the training of the joint detection and pose estimation
models, 25% of the mini-batches consist of positive examples. Our mini-batches are of size
128 except when using synthetic images. When using synthetic images, we randomly create
montages with the rendered views from [27], each montage containing 9 objects, for a total
mini-batch size of 137 (96 backgrounds and 32 positive patches from real images and 9
positive synthetic objects). This allows for an efficient training in the setup of Fast R-CNN.

We initialized the learning rate at 0.001, and divided it by 10 after convergence of the
training error. The number of iterations depends of the amount of training data: when using
only Pascal VOC data, we decrease the learning rate after 30K iterations and continue to train
until 40K; when adding ImageNet data we decrease the learning rate after 45K iterations
and continue to train until 100K; and finally, when adding synthetic data, we decrease the
learning rate after 100K iterations and continue to train until 300K.

All experiments were conducted using the Torch7 framework [3] and we will release our
full code upon publication.
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Table 2: Jointly training for detection and pose estimation with AlexNet architecture and
Pascal VOC 2012 data

Joint detector Independant detector
Method mAP mAVP24 mAP mAVP24

Joint Regression 2D 49.2 15.7 51.6 16.4
Joint Regression 3D 49.6 17.1 51.6 17.4
Joint classification 48.6 21.1 51.6 20.5

5.2 Results
5.2.1 Comparison of the different approaches for pose estimation

We first compare the different approaches for pose estimation from Section 3. We use a fixed
object detector based on the AlexNet architecture, trained for detection on Pascal VOC 2012
training set and we report the results in Table 1. We can first observe that for regression,
a pose representation with a higher dimensionality (3D) performs better than when using a
smaller dimensionality (2D). We believe the redundancy in the representation helps to better
handle ambiguities in the estimation. The classification approach however significantly out-
performs both regressions (19.3% AVP compared to 13.9% and 15.7%). Interestingly, the
simplest classification approach from Section 3.2 performs slightly better than the geometry-
aware method. We think the main reason for this difference is that the simple classification
optimize exactly for the objective evaluated by the AVP, and thus this result can be seen as
an artefact of the evaluation. Note that the results could be different for even more fine-
grained estimation where less examples per class are available. Nevertheless, since the more
complex geometric structure aware approach performed worse than the direct classification
baseline, we focus in the rest of this paper on the simplest direct classification approach.

5.2.2 Benefits of joint training for detection and pose estimation

We evaluate the benefits of jointly training a model to detect the objects and predict their
orientation. These benefits can be of two kinds. First, the order of the detections candidates
given by the new detector may favor the confident orientations and thus increase the AVP.
Second, the pose estimates can be better for a given object. To evaluate both effects inde-
pendently, we report in Table 2 the results using both the order given by the detector used
in the previous section and the order given by the new joint classifier. All experiments were
performed as above, with the AlexNet architecture and the Pascal VOC training data.

Comparing Table 2 to Table 1 shows two main effects. First, the mAVP is improved
even when using the same classifier, demonstrating improved viewpoint estimation with joint
training. Second, the mAP is decreased, showing that the detection performs worse when
trained jointly. However, one can also notice that the best mAVP is still obtained with the
joint classifier. This shows that the pose estimation is better in the joint model, and also
that for the case of classification the order learned when training jointly the detector favours
confident poses. This is not the case for the regression approaches for which the best results
are obtained using the independent detector and the jointly-learned pose estimation.

5.2.3 Influence of network architectures and training data

In this section, we consider our joint classification approach, which performs best in the eval-
uations of the previous section, and study how its performance varies when using different
architectures and more training data.
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Table 3: Influence of the amount of training data and network architecture on our joint
classification approach

AlexNet VGG16
Training data mAP mAVP24 mAP mAVP24

Pascal VOC2012 train 48.6 21.1 56.9 27.3
+ 250 per class 51.6 25.0 58.0 30.0
+ 500 per class 53.8 26.5 59.0 31.6
+ 1000 per class 53.6 28.3 60.0 32.9
+ full ImageNet 52.8 28.4 59.9 34.4
+ synthetic data 55.9 31.5 61.6 36.1

The comparison of the left and right columns of Table 3 shows that unsurprisingly the
use of the VGG16 network instead of AlexNet consistently improves performances. This
improvement is slightly less for the mAVP than for the mAP, hinting that the mAVP boost is
mainly due to improved detection performances.

For the training data, we first progressively add training images from ImageNet to the
training images from Pascal VOC. The full subset of the ImageNet dataset annotated in
Pascal3D+ contains in average approximately 1900 more images per class, but is strongly
unbalanced between the different classes. The analysis of these results shows consistent
improvements when the training set includes more data. Interestingly, the mAVP is improved
more than the mAP, showing that the additional data is more useful for pose estimation than
for detection. The addition of synthetic data (2.4M positive examples) improves the results
even more, demonstrating that the amount of training data is still a limiting factor even
if one uses an AlexNet architecture and includes the ImageNet images, a fact that was not
demonstrated in [27]. Note that our joint approach significantly outperforms the state-of-the-
art results [28] (currently 31.1% mAVP, based on VGG16 and ImageNet annotations) both
without using synthetic data with VGG16, and with synthetic data and AlexNet architecture.

5.2.4 Comparison to the state of the art

Table 4 provides the details of the AVP24 performance improvements over all classes as well
as a comparison with three baselines: DPM-VOC+VP [22], which uses a modified version
of DPM to also predict poses, Render for CNN [27] which uses real images from Pascal
VOC as well as CAD renders for training a CNN based on AlexNet, and [28] which uses a
VGG16 architecture and ImageNet data to classify orientations for each object category. It
can be seen that we improve consistently on all baselines except for the chair class. A more
detailed analysis shows that this exception is related to the difference between the ImageNet
and Pascal chairs. Indeed, when adding the ImageNet data to the Pascal data, the detec-
tion performance for chairs drops from 34.5% AP to 19.23% AP. Similarly, the difference
between the very different appearance of the rendered 3D models and real images is respon-
sible for the fact that synthetic training data decreases performance on boats, motorbikes and
trains. In average, we still found that synthetic images boost the results by 1.7% mAVP.

Finaly, Table 5 provides the comparison between our full pipeline and the baselines for
the 4, 8 and 16 viewpoint classification tasks, showing that our improvement of the state of
the art is consistently high.
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Table 4: Summary of results and comparison with baselines using AVP24
Method aero bike boat bus car chair table mbike sofa train tv mAVP24

DPM-VOC+VP [22] 9.7 16.7 2.2 42.1 24.6 4.2 2.1 10.5 4.1 20.7 12.9 13.6
Render For CNN [27] 21.5 22.0 4.1 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8

Viewpoints & Keypoints [28] 37.0 33.4 10.0 54.1 40.0 17.5 19.9 34.3 28.9 43.9 22.7 31.1
Classif. approach & AlexNet 21.6 15.4 5.6 41.2 26.4 7.3 9.3 15.3 13.5 32.9 24.3 19.3

+ our joint training 24.4 16.2 4.7 49.2 25.1 7.7 10.3 17.7 14.8 36.6 25.6 21.1
+ VGG16 instead of AlexNet 26.3 29.0 8.2 56.4 36.3 13.9 14.9 27.7 20.2 41.5 26.2 27.3

+ ImageNet data 42.4 37.0 18.0 59.6 43.3 7.6 25.1 39.3 29.4 48.1 28.4 34.4
+ synthetic data 43.2 39.4 16.8 61.0 44.2 13.5 29.4 37.5 33.5 46.6 32.5 36.1

Table 5: Comparison with state of the art using AVP4, AVP8 and AVP16
Method measure aero bike boat bus car chair table mbike sofa train tv mAVP

[28] AVP4 63.1 59.4 23.0 69.8 55.2 25.1 24.3 61.1 43.8 59.4 55.4 49.1
Ours AVP4 70.3 67.0 36.7 75.4 58.3 21.4 34.5 71.5 46.0 64.3 63.4 55.4
[28] AVP8 57.5 54.8 18.9 59.4 51.5 24.7 20.5 59.5 43.7 53.3 45.6 44.5
Ours AVP8 66.0 62.5 31.2 68.7 55.7 19.2 31.9 64.0 44.7 61.8 58.0 51.3
[28] AVP16 46.6 42.0 12.7 64.6 42.7 20.8 18.5 38.8 33.5 42.5 32.9 36.0
Ours AVP16 51.4 43.0 23.6 68.9 46.3 15.2 29.3 49.4 35.6 47.0 37.3 40.6

6 Conclusion
Combining our joint classification approach to the improvements provided by a deep archi-
tecture and additional training data, we increase state-of-the-art performance of pose estima-
tion by 5% mAVP. We think that highlighting the different factors of this improvement and
setting a new baseline will help and stimulate further work on viewpoint estimation.
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