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1 E-step with unknown seeds

Here, we consider the E-step when the position of some seeds is unknown. Let s" u =
1,...,U, be a subset of the parts that do not have seeds. In this case, instead of
p(m,h' h%|b, s,0) in equation (8), we approximate

using factorized approximation on m, h', h? and s* with the following factorization:
1 J K
g’ (m,h' h*,s") =T 1q? (m) [T ) [Tad ) [T (s0)
i=1 j=1 k=1 t€u

Using (11) we obtain:

i=

1
q;l(st:s)txexp< qg(mi:t)”s_fcoord(i)ll%> :
i=1

Getting ¢?(s,) requires computing of ¢(s, = s) for all coordinates of pixels s. We found
that it is possible to replace qf(st) with delta function to avoid computational complexity,
since experiment results did not change. This operation is equivalent to setting seed s; to the
position of 7, where

1
S;F = argmyin <Z q?(mi = t)ls_fcoord(i)%> .
: i=1

Equations (13), (14) and (15) to calculate q?(mi),q‘f (h}) and gf (h}) remain unchanged.

(© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Multilabel segmentations: (a) segment the object region into parts given the seeds

using naive Euclidean distance (Eucl), (b) segment the object region into parts given the

seeds using Euclidean distance on the path lying inside the object (Euc2), (c) manual seg-
mentations.

Figure 2: (a) — Samples of the cropped and rescaled images from Weizmann dataset; (b) —
Samples of the cropped and rescaled images from Caltech-101 motorbikes dataset.

2 Multilabel samples

Different types of the multilabel segmentations for Weizmann dataset are shown on fig. (1).

3 Datasets

We perform all the experiments on the two datasets: the Weizmann horse dataset and the
Caltech-101 motorbikes.

The Weizmann horse dataset contains 327 images of horses and a binary mask for each
image. The images from the dataset were cropped and rescaled using a 2-step rescaling
procedure with delotation in the middle. This procedure allows to obtain smooth and realistic
horses’ shapes with 32 x 32 pixels resolution i.e. see fig. 2a. We split the dataset into training
set with 277 shapes and test set with 50 horses by random selection.

The Caltech-101 motorbikes dataset contains 798 images of motorbikes and a binary
mask for each image. The images from the dataset were cropped and rescaled to 40 x 40
pixels resolution i.e. see fig. 2b. We split dataset into training set with 600 shapes and test
set with 198 motorbikes by random selection.
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Figure 3: (a) — ground-truth labelings of parts obtained manually; (b) — samples from the
MSBM trained using the full ground truth; (c) — samples from the MSBM trained using our
method that is aware of only binary masks and part seeds; (d) — samples from the MSBM
trained using multilabel segmentations obtained by Eucl; (e) — samples from the MSBM
trained using multilabel segmentations obtained by Euc2. The corresponding cells of (b),
(c), (d) and (e) are generated from the same initialization.

4 Comparison of MSBMs trained differently

Fig. (3) shows samples generated by the MSBMs trained differently on Weizmann horses
dataset. Fig. (4) shows samples generated by the SBM and the MSBMs trained differently
on Caltech-101 motorbikes dataset.

5 Shape completions

Fig. (5) presents result of “imputation score” experiment for Weizmann horses dataset and
for Caltech-101 motorbikes.
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Figure 4: (a) — samples from the SBM; (b) — samples from the MSBM trained using our
method that is aware of only binary masks and part seeds; (c) — samples from the MSBM
trained using multilabel segmentations obtained by Eucl; (d) — samples from the MSBM
trained using multilabel segmentations obtained by Euc2. The corresponding cells of (a),
(b), (c) and (d) are generated from the same initialization.

6 The shape generation from the seeds

Fig. (6) presents result of “generation from seeds” experiment for Weizmann horses dataset
and for Caltech-101 motorbikes.
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Figure 5: Imputation scores for the different models with different number of units on the
hidden layers for Weizmann dataset — (a)-(f) and for Caltech-101 motorbikes — (g)-(1) (the
higher the better). The blue lines correspond to the SBM model, the red ones — to the MSBM
trained using the fully annotated ground truth, the green ones — trained with our EM-based
method, the cyan ones — to the MSBM trained using the multilabel segmentations obtained by
Eucl, the magenta ones— to the MSBM trained using the multilabel segmentations obtained
by Euc2.
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Figure 6: The Hamming distance between the test shapes and shapes generated by the SBM
and the MSBM from the seeds for Weizmann dataset — (a), (b) and (c) and for Caltech-101
motorbikes — (d), (e) and (f) (the lower the better).



