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1 Network architecture

For clearance we provide additional schematic representation of wide residual networks in
figure 1 and table 2. More detailed schematics of ResNet-10-2 and ResNet-16-2 are provided
in figure 2.
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Figure 1: Schematic rep-
resentation of a wide
ResNet

group name output size block type = B(3,3)
conv1 32×32 [3×3, 16]

conv2 32×32
[

3×3, 16×k
3×3, 16×k

]
×N

conv3 16×16
[

3×3, 32×k
3×3, 32×k

]
×N

conv4 8×8
[

3×3, 64×k
3×3, 64×k

]
×N

avg-pool 1×1 [8×8]

Table 1: Structure of wide residual networks. Network
width is determined by factor k. Original architecture [2]
is equivalent to k = 1. Groups of convolutions are shown
in brackets where N is a number of blocks in group,
downsampling performed by the first layers in groups
conv3 and conv4. Final classification layer is omit-
ted for clearance. In the particular example shown, the
network uses a ResNet block type B(3,3).

2 Type of convolutions in residual block

We updated table 2 (that contains residual networks with different block types) with 5-time
run statistics (median, mean, std) and additional column with timings per training epoch.
Block B(3,3) turned out to be the best by a little margin, and B(3,1) with B(3,1,3) are very
close to B(3,3) in accuracy having less parameters and less layers. B(3,1,3) is faster than
others by a small margin.

block type depth # params time per epoch (s) CIFAR-10
B(1,3,1) 40 1.4M 85.8 6.06 (6.06±0.16)
B(3,1) 40 1.2M 67.5 5.78 (5.78±0.09)
B(1,3) 40 1.3M 72.2 6.42 (6.39±0.22)
B(3,1,1) 40 1.3M 82.2 5.86 (5.87±0.09)
B(3,3) 28 1.5M 67.5 5.73 (5.68±0.10)
B(3,1,3) 22 1.1M 59.9 5.78 (5.83±0.17)

Table 2: Test error (%) on CIFAR-10 of residual networks with k = 2 and different block
types. Reported in median (mean±std) over 5 runs

3 Number of convolution layers per block

We updated table 3 (with varying number of convolutions per block l) with 5-time run me-
dian, mean and std statistics. As expected, the results are consistent with 1-time runs, as the
differences between numbers were larger than standard deviation.
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l CIFAR-10
1 6.69 (6.75±0.08)
2 5.43 (5.47±0.12)
3 5.65 (5.64±0.19)
4 5.93 (5.95±0.22)

Table 3: Test error (%) on CIFAR-10 of ResNet-40-2 (2.2M) with various l.

depth-k # params time (ms) CIFAR-10 CIFAR-100
VGG† [4] 13 20.6M 31 6.31 26.86

original-ResNet[1] 110 1.7M - 6.43 25.16
1202 10.2M - 7.93 27.82

stoc-depth[3] 110 1.7M - 5.23 24.58
1202 10.2M - 4.91 -

pre-act-ResNet[2]
110 1.7M - 6.37 -
164 1.7M 83 5.46 24.33
1001 10.2M 512 4.64 22.71

ours

40-4 8.7M 65 4.97 22.89
16-8 11.0M 94 4.81 22.07
22-8 17.2M 140 4.38 21.22

22-10 26.8M 235 4.44 20.75
28-10 36.5M 312 4.17 20.50

Table 4: Test error of different methods on CIFAR-10 and CIFAR-100 with moderate data
augmentation. We don’t use dropout for these results. VGG network was trained by us. In
second column k is a widening factor. Time is provided for forward+backward update with
batch size 32 on Titan X and cudnn v5. We don’t benchmark original ResNet [1] it in favor
to newer [2] and [3] because it requires modifications to forward and backward update.

4 Wide vs. thin residual networks

To compare with other methods in terms of the number of parameters and accuracy we
provide an additional table 4 with a column specifying number of parameters for each model.
We also trained an additional ResNet-28-10 with 36.5×106 parameters, 3.5 times more than
ResNet-1001-1, that achieves 4.17% and 20.50% on CIFAR-10 and CIFAR-100, better than
our other networks, which is a new state-of-the-art on these datasets.

For reference we trained «plain» modernized VGG-style network with batch normaliza-
tion and average pooling on top similar to our ResNet-16-8 architecture. This network with
only 13 layers achieves competitive results on CIFAR-10 and CIFAR-100. In terms of the
number of parameters it is similar to ResNet-22-8, however achieves about 2% and 5% worse
accuracy.

We can see that wide residual networks are much more efficient than very deep thin
networks.
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Figure 2: Schematic representations of wide residual networks. Colors mean tensor sharing
between modules.


