
SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 1

Wide Residual Networks
Sergey Zagoruyko
sergey.zagoruyko@enpc.fr

Nikos Komodakis
nikos.komodakis@enpc.fr

Université Paris-Est, École des Ponts
ParisTech
Paris, France

Abstract

Deep residual networks were shown to be able to scale up to thousands of layers and
still have improving performance. However, each fraction of a percent of improved accu-
racy costs nearly doubling the number of layers, and so training very deep residual net-
works has a problem of diminishing feature reuse, which makes these networks very slow
to train. To tackle these problems, in this paper we conduct a detailed experimental study
on the architecture of ResNet blocks, based on which we propose a novel architecture
where we decrease depth and increase width of residual networks. We call the resulting
network structures wide residual networks (WRNs) and show that these are far superior
over their commonly used thin and very deep counterparts. For example, we demonstrate
that even a simple 16-layer-deep wide residual network outperforms in accuracy and ef-
ficiency all previous deep residual networks, including thousand-layer-deep networks,
achieving new state-of-the-art results on CIFAR-10, CIFAR-100 and SVHN. Our code is
available at https://github.com/szagoruyko/wide-residual-networks.

1 Introduction
Convolutional neural networks have seen a gradual increase of the number of layers in the
last few years, starting from AlexNet [14], VGG [23], Inception [27] to Residual [9] net-
works, corresponding to improvements in many image recognition tasks. The superiority
of deep networks has been spotted in several works in the recent years [3, 19]. However,
training deep neural networks has several difficulties, including exploding/vanishing gradi-
ents and degradation. Various techniques were suggested to enable training of deeper neural
networks, such as well-designed initialization strategies [1, 10], better optimizers [26], skip
connections [17, 20], knowledge transfer [4, 21] and layer-wise training [22].

The latest residual networks [9], a follow-up of highway networks [25], had a large suc-
cess winning ImageNet and COCO 2015 competition and achieving state-of-the-art in sev-
eral benchmarks, including object classification on ImageNet and CIFAR, object detection
and segmentation on PASCAL VOC and MS COCO. Compared to Inception architectures
they show better generalization, meaning the features can be utilized in transfer learning with
better efficiency. Also, follow-up work showed that residual links speed up convergence of
deep networks [28]. Recent follow-up work explored the order of activations in residual net-
works, presenting identity mappings in residual blocks [11] and improving training of very
deep networks. The essential difference between residual and highway networks is that in
the latter residual links are gated and weights of these gates are learned.

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 87.1-87.12

DOI: https://dx.doi.org/10.5244/C.30.87

https://dx.doi.org/10.5244/C.30.87


2 SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS

conv3x3

conv3x3

xl

xl+1

(a) basic

conv1x1

conv3x3

conv1x1

xl

xl+1

(b) bottleneck

conv3x3

conv3x3

xl

xl+1

(c) basic-wide

dropout

xl

xl+1

conv3x3

conv3x3

(d) wide-dropout

Figure 1: Various residual blocks used in the paper. Batch normalization and ReLU precede
each convolution (omitted for clarity)

So, up to this point, the study of residual networks has focused mainly on the order
of activations inside a ResNet block and the depth of residual networks. In this work we
attempt to conduct an experimental study that goes beyond the above points. By doing
so, our goal is to explore a much richer set of network architectures of ResNet blocks and
thoroughly examine how several other different aspects besides the order of activations affect
performance. As we explain below, such an exploration of architectures has led to new
interesting findings with great practical importance concerning residual networks.

Width vs depth in residual networks. The problem of shallow vs deep networks has
been in discussion for a long time in machine learning [2, 16] with pointers to the circuit
complexity theory literature showing that shallow circuits can require exponentially more
components than deeper circuits. The authors of residual networks tried to make them as thin
as possible in favor of increasing their depth and having less parameters, and even introduced
a «bottleneck» block which makes ResNet blocks even thinner.

We note, however, that the residual block with identity mapping that allows to train
very deep networks is at the same time a weakness of residual networks. As gradient flows
through the network there is nothing to force it to go through residual block weights and it
can avoid learning anything during training, so it is possible that there is either only a few
blocks that learn useful representations, or many blocks share very little information with
small contribution to the final goal. This problem was formulated as diminishing feature
reuse in [25]. The authors of [12] tried to address this problem with the idea of randomly
disabling residual blocks during training. This method can be viewed as a special case of
dropout [24], where each residual block has an identity scalar weight on which dropout is
applied. The effectiveness of this approach proves the hypothesis above.

Motivated by the above observation, our work builds on top of [11] and tries to answer
the question of how wide deep residual networks should be and address the problem of train-
ing. In this context, we show that the widening of ResNet blocks (if done properly) provides
a much more effective way of improving performance of residual networks compared to in-
creasing their depth. In particular, we present wider deep residual networks that significantly
improve over [11], having 50 times less layers and being more than 2 times faster. We call
the resulting network architectures wide residual networks. For instance, our wide 16-layer
deep network has the same accuracy as a 1000-layer thin deep network and a comparable
number of parameters, although being several times faster to train. This type of experiments
thus seem to indicate that the main power of deep residual networks is in residual blocks, and
that the effect of depth is supplementary. We note that one can train even better wide resid-
ual networks that have twice as many parameters (and more), which suggests that to further



SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 3

improve performance by increasing depth of thin networks one needs to add thousands of
layers in this case.

Use of dropout in ResNet blocks. Dropout was first introduced in [24] and then was
adopted by many successful architectures as [14, 23] etc. It was mostly applied on top layers
that had a large number of parameters to prevent feature coadaptation and overfitting. It was
then mainly substituted by batch normalization [13] which was introduced as a technique to
reduce internal covariate shift in neural network activations by normalizing them to have spe-
cific distribution. It also works as a regularizer and the authors experimentally showed that a
network with batch normalization achieves better accuracy than a network with dropout. In
our case, as widening of residual blocks results in an increase of the number of parameters,
we studied the effect of dropout to regularize training and prevent overfitting. Previously,
dropout in residual networks was studied in [11] with dropout being inserted in the identity
part of the block, and the authors showed negative effects of that. Instead, we argue here
that dropout should be inserted between convolutional layers. Experimental results on wide
residual networks show that this leads to consistent gains, yielding even new state-of-the-
art results (e.g., 16-layer-deep wide residual network with dropout achieves 1.64% error on
SVHN).

In summary, the contributions of this work are as follows:

• We present a detailed experimental study of residual network architectures that thor-
oughly examines several important aspects of ResNet block structure.

• We propose a novel widened architecture for ResNet blocks that allows for residual
networks with significantly improved performance.

• We propose a new way of utilizing dropout within deep residual networks so as to
properly regularize them and prevent overfitting during training.

• Last, we show that our proposed ResNet architectures achieve state-of-the-art results
on several datasets dramatically improving accuracy and speed of residual networks.

2 Wide residual networks
Residual block with identity mapping can be represented by the following formula:

xl+1 = xl +F(xl ,Wl) (1)

where xl+1 and xl are input and output of the l-th unit in the network, F is a residual func-
tion andWl are parameters of the block. Residual network consists of sequentially stacked
residual blocks.

In [11] residual networks consisted of two type of blocks:

• basic - with two consecutive 3× 3 convolutions with batch normalization and ReLU
preceding convolution: conv3×3-conv3×3 Fig.1(a)
• bottleneck - with one 3× 3 convolution surrounded by dimensionality reducing and

expanding 1×1 convolution layers: conv1×1-conv3×3-conv1×1 Fig.1(b)

Compared to the original architecture [9] in [11] the order of batch normalization, acti-
vation and convolution in residual block was changed from conv-BN-ReLU to BN-ReLU-
conv. As the latter was shown to train faster and achieve better results we don’t consider



4 SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS

group name output size block type = B(3,3)
conv1 32×32 [3×3, 16]

conv2 32×32
[

3×3, 16×k
3×3, 16×k

]
×N

conv3 16×16
[

3×3, 32×k
3×3, 32×k

]
×N

conv4 8×8
[

3×3, 64×k
3×3, 64×k

]
×N

avg-pool 1×1 [8×8]

Table 1: Structure of wide residual networks. Network width is determined by factor k.
Original architecture [11] is equivalent to k = 1. Groups of convolutions are shown in brack-
ets where N is a number of blocks in group, downsampling performed by the first layers
in groups conv3 and conv4. Final classification layer is omitted for clearance. In the
particular example shown, the network uses a ResNet block of type B(3,3).

the original version. Furthermore, so-called «bottleneck» blocks were initially used to make
blocks less computationally expensive to increase the number of layers. As we want to study
the effect of widening and «bottleneck» is used to make networks thinner we don’t consider
it too, focusing instead on «basic» residual architecture.

There are essentially three simple ways to increase representational power of residual
blocks:

• to add more convolutional layers per block
• to widen the convolutional layers by adding more feature planes
• to increase filter sizes in convolutional layers

As small filters were shown to be very effective in several works including [23, 28] we do
not consider using filters larger than 3×3. Let us also introduce two factors, deepening factor
l and widening factor k, where l is the number of convolutions in a block and k multiplies
the number of features in convolutional layers, thus the baseline «basic» block corresponds
to l = 2, k = 1. Figures 1(a) and 1(c) show schematic examples of «basic» and «basic-wide»
blocks respectively.

The general structure of our residual networks is illustrated in table 1: it consists of an
initial convolutional layer conv1 that is followed by 3 groups (each of size N) of residual
blocks conv2, conv3 and conv4, followed by average pooling and final classification
layer. The size of conv1 is fixed in all of our experiments, while the introduced widen-
ing factor k scales the width of the residual blocks in the three groups conv2-4 (e.g., the
original «basic» architecture is equivalent to k = 1). We want to study the effect of represen-
tational power of residual block and, to that end, we perform and test several modifications
to the «basic» architecture, which are detailed in the following subsections.

2.1 Type of convolutions in residual block
Let B(M) denote residual block structure, where M is a list with the kernel sizes of the
convolutional layers in a block. For example, B(3,1) denotes a residual block with 3×3 and
1× 1 convolutional layers (we always assume square spatial kernels). Note that, as we do
not consider «bottleneck» blocks as explained earlier, the number of feature planes is always



SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 5

kept the same across the block. We would like to answer the question of how important each
of the 3× 3 convolutional layers of the «basic» residual architecture is and if they can be
substituted by a less computationally expensive 1× 1 layer or even a combination of 1× 1
and 3× 3 convolutional layers, e.g., B(1,3) or B(1,3). This can increase or decrease the
representational power of the block. We thus experiment with the following combinations
(note that the last combination, i.e., B(3,1,1) is similar to effective Network-in-Network
[18] architecture):

1. B(3,3) - original «basic» block
2. B(3,1,3) - with one extra 1×1 layer
3. B(1,3,1) - with the same dimensionality of all convolutions, «straightened» bottleneck
4. B(1,3) - the network has alternating 1×1 - 3×3 convolutions everywhere
5. B(3,1) - similar idea to the previous block
6. B(3,1,1) - Network-in-Network style block

2.2 Number of convolutional layers per residual block
We also experiment with the block deepening factor l to see how it affects performance. The
comparison has to be done among networks with the same number of parameters, so in this
case we need to build networks with different l and d (where d denotes the total number of
blocks) while ensuring that network complexity is kept roughly constant. This means, for
instance, that d should decrease whenever l increases.

2.3 Width of residual blocks
In addition to the above modifications, we experiment with the widening factor k of a block.
While the number of parameters increases linearly with l (the deepening factor) and d
(the number of ResNet blocks), number of parameters and computational complexity are
quadratic in k. However, it is more computationally effective to widen the layers than have
thousands of small kernels as GPU is much more efficient in parallel computations on large
tensors, so we are interested in an optimal d to k ratio.

One argument for wider residual networks would be that almost all architectures before
residual networks, including the most successful Inception [27] and VGG [23], were much
wider compared to [11]. For example, residual networks WRN-22-8 and WRN-16-10 (see
next paragraph for explanation of this notation) are very similar in width, depth and number
of parameters to VGG architectures.

We further refer to original residual networks with k = 1 as «thin» and to networks with
k > 1 as «wide». In the rest of the paper we use the following notation: WRN-n-k denotes
a residual network that has a total number of convolutional layers n and a widening factor k
(for example, network with 40 layers and k = 2 times wider than original would be denoted
as WRN-40-2). Also, when applicable we append block type, e.g. WRN-40-2-B(3,3).

2.4 Dropout in residual blocks
As widening increases the number of parameters we would like to study ways of regular-
ization. Residual networks already have batch normalization that provides a regularization
effect, however it requires heavy data augmentation, which we would like to avoid, and it’s



6 SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS

block type depth # params time,s CIFAR-10
B(1,3,1) 40 1.4M 85.8 6.06
B(3,1) 40 1.2M 67.5 5.78
B(1,3) 40 1.3M 72.2 6.42
B(3,1,1) 40 1.3M 82.2 5.86
B(3,3) 28 1.5M 67.5 5.73
B(3,1,3) 22 1.1M 59.9 5.78

Table 2: Test error (%, median over 5 runs) on CIFAR-10
of residual networks with k = 2 and different block types.
Time column measures one training epoch.

l CIFAR-10
1 6.69
2 5.43
3 5.65
4 5.93

Table 3: Test error (%, me-
dian over 5 runs) on CIFAR-
10 of WRN-40-2 (2.2M)
with various l.

not always possible. We add a dropout layer into each residual block between convolutions
as shown in fig. 1(d) and after ReLU to perturb batch normalization in the next residual
block and prevent it from overfitting. In very deep residual networks that should help deal
with diminishing feature reuse problem enforcing learning in different residual blocks.

3 Experimental results

All of our experiments are based on [11] architecture with pre-activation residual blocks
and we use it as baseline. For experiments we chose well-known CIFAR-10, CIFAR-100
and SVHN image classification datasets. CIFAR-10 and CIFAR-100 datasets [15] consist of
32×32 color images drawn from 10 and 100 classes split into 50,000 train and 10,000 test
images. For image preprocessing we follow the methodology of [11] and [7], performing
global contrast normalization and ZCA whitening. For data augmentation we do horizontal
flips and take random crops from image padded by 4 pixels on each side, filling missing
pixels with reflections of original image. We don’t use heavy data augmentation as proposed
in [8]. For experiments on SVHN we don’t do any image preprocessing, except dividing
images by 255 to provide them in [0,1] range as input. To speed up training we run «type
of convolutions in a block» and «number of convolutions per block» experiments with k = 2
and reduced depth compared to [11]. In the following we describe our findings w.r.t. the
different ResNet block architectures and also analyze the performance of our proposed wide
residual networks.

Type of convolutions in a block

We start by reporting results using trained networks with different block types B (reported
results are on CIFAR-10). We used WRN-40-2 for blocks B(1,3,1), B(3,1), B(1,3) and
B(3,1,1) as these blocks have only one 3×3 convolution. To keep the number of parameters
comparable we trained other networks with less layers: WRN-28-2-B(3,3) and WRN-22-2-
B(3,1,3). We provide the results including test accuracy in median over 5 runs and time per
training epoch in the table 2. Block B(3,3) turned out to be the best by a little margin, and
B(3,1) with B(3,1,3) are very close to B(3,3) in accuracy having less parameters and less
layers. B(3,1,3) is faster than others by a small margin.

Based on the above, blocks with comparable number of parameters turned out to give
more or less the same results. Due to this fact, we hereafter restrict our attention to only
WRNs with 3×3 convolutions so as to be also consistent with other methods.



SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 7

depth k # params CIFAR-10 CIFAR-100
40 1 0.6M 6.85 30.89
40 2 2.2M 5.33 26.04
40 4 8.9M 4.97 22.89
40 8 35.7M 4.66 -
28 10 36.5M 4.17 20.50
28 12 52.5M 4.33 20.43
22 8 17.2M 4.38 21.22
22 10 26.8M 4.44 20.75
16 8 11.0M 4.81 22.07
16 10 17.1M 4.56 21.59

Table 4: Test error (%) of various wide networks on CIFAR-10 and CIFAR-100.

Number of convolutions per block

We next proceed with the experiments related to varying the deepening factor l (which rep-
resents the number of convolutional layers per block). We show indicative results in table 3,
where in this case we took WRN-40-2 with 3×3 convolutions and trained several networks
with different deepening factor l ∈ [1,2,3,4], same number of parameters (2.2×106) and
same number of convolutional layers.

As can be noticed, B(3,3) turned out to be the best, whereas B(3,3,3) and B(3,3,3,3)
had the worst performance. We speculate that this is probably due to the increased difficulty
in optimization as a result of the decreased number of residual connections in the last two
cases. Furthermore, B(3) turned out to be quite worse. The conclusion is that B(3,3) is
optimal in terms of number of convolutions per block. For this reason, in the remaining
experiments we only consider wide residual networks with a block of type B(3,3).

Width of residual blocks

As we try to increase widening parameter k we have to decrease total number of layers. To
find an optimal ratio we experimented with k from 2 to 12 and depth from 16 to 40. The
results are presented in table 4. As can be seen, all networks with 40, 22 and 16 layers see
consistent gains when width is increased by 1 to 12 times. On the other hand, when keeping
the same fixed widening factor k = 8 or k = 10 and varying depth from 16 to 28 there is a
consistent improvement, however when we further increase depth to 40 accuracy decreases
(e.g., WRN-40-8 loses in accuracy to WRN-22-8).

We show additional results in table 5 where we compare thin and wide residual networks.
As can be observed, wide WRN-40-4 can be compared to thin ResNet-1001 as they achieve
approximately the same accuracy on CIFAR-10 and CIFAR-100. It is interesting that they
have comparable number of parameters, 8.9×106 and 10.2×106, suggesting that depth does
not add regularization effects compared to width at this level. As we show further in bench-
marks, WRN-40-4 is 8 times faster to train, so evidently depth to width ratio in the original
thin residual networks is far from optimal.

Also, wide WRN-28-10 outperforms thin ResNet-1001 by 0.8% (with the same mini-
batch size during training) on CIFAR-10 and 2.2% on CIFAR-100, having 36 times less
layers (see table 5). We note that the result of 4.64% with ResNet-1001 was obtained with
batch size 64, whereas we use a batch size 128 in all of our experiments (i.e., all other results
reported in table 5 are with batch size 128). Training curves for these networks are presented
in Figure 2.



8 SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS

depth-k # params CIFAR-10 CIFAR-100
NIN [18] 8.81 35.67
DSN [17] 8.22 34.57
FitNet [21] 8.39 35.04
Highway [25] 7.72 32.39
ELU [5] 6.55 24.28

original-ResNet[9]
110 1.7M 6.43 25.16
1202 10.2M 7.93 27.82

stoc-depth[12]
110 1.7M 5.23 24.58
1202 10.2M 4.91 -

pre-act-ResNet[11]
110 1.7M 6.37 -
164 1.7M 5.46 24.33
1001 10.2M 4.92(4.64) 22.71

WRN (ours)
40-4 8.7M 4.97 22.89
16-8 11.0M 4.81 22.07
28-10 36.5M 4.17 20.50

Table 5: Test error of different methods on CIFAR-10 and CIFAR-100 with moderate data
augmentation (flip/translation). We don’t use dropout for these results. In the second column
k is a widening factor. Results for [11] are shown with minibatch size 128 (as ours), and 64
in parenthesis. These results are based on 1-time runs.

Despite previous arguments that depth gives regularization effects and width causes net-
work to overfit, we successfully train networks with 5 times more parameters than ResNet-
1001. Wide WRN-28-12 (table 4) has 52.5×106 parameters and outperforms ResNet-1001
(table 5) by a significant margin.

To summarize:

• widening consistently improves performance across residual networks of different
depth;

• increasing both depth and width helps until the number of parameters becomes too
high and stronger regularization is needed;

• there doesn’t seem to be a regularization effect from very high depth in residual net-
works as wide networks with the same number of parameters as thin ones can learn
same or better representations. Furthermore, wide networks can successfully learn
with a 2 or more times larger number of parameters than thin ones, which would re-
quire doubling the depth of thin networks, making them infeasibly expensive to train.

Dropout in residual blocks

We trained networks with dropout inserted into residual block between convolutions on all
datasets. We used cross-validation to determine dropout probability values, 0.3 on CIFAR
and 0.4 on SVHN. Also, we didn’t have to increase number of training epochs compared to
baseline networks without dropout.

On CIFAR-10 there is almost no significant improvement, and on CIFAR-100 dropout
successfully reduces error by 0.5% using wide WRN-28-10 and by 1.65% using thin ResNet-
50. To our knowledge, that’s the first result to approach 20% error on CIFAR-100, even
outperforming methods with heavy data augmentation.



SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 9

0 50 100 150 200

100

101

102
tr

a
in

in
g
 l
o
ss

0

5

10

15

20

te
st

 e
rr

o
r 

(%
)

0

5

10

15

20

te
st

 e
rr

o
r 

(%
)

CIFAR-10

ResNet-164(error 5.46%)

WRN-28-10(error 4.17%)

0 50 100 150 200

101

102

tr
a
in

in
g
 l
o
ss

0

10

20

30

40

50

te
st

 e
rr

o
r 

(%
)

0

10

20

30

40

50

te
st

 e
rr

o
r 

(%
)

CIFAR-100

ResNet-164(error 24.33%)

WRN-28-10(error 20.50%)

Figure 2: Training curves for thin and wide residual networks on CIFAR-10 and CIFAR-100.
Solid lines denote test error (y-axis on the right), dashed lines denote training loss (y-axis on
the left).

depth k dropout CIFAR-10 CIFAR-100 SVHN
16 4 5.37 24.53 1.85
16 4 X 5.55 25.76 1.64
28 10 4.17 20.50 -
28 10 X 4.39 20.04 -
52 1 6.83 29.88 2.08
52 1 X 6.76 28.23 1.70

Table 6: Effect of dropout in residual block.

We notice a disturbing effect in residual network training after the first learning rate drop
when both loss and validation error suddenly start to go up and oscillate on high values
until the next learning rate drop. It might be related to momentum in batch normalization
calculation, however we didn’t investigate that further. Dropout partially removes this effect
in most cases, see figures 2, 3.

The effect of dropout becomes more evident on SVHN. This is probably due to the fact
that we don’t do any data augmentation and batch normalization overfits, so dropout adds
a regularization effect. Evidence for this can be found on training curves in figure 3 where
the loss without dropout drops to very low values. The results are presented in table 6.
We observe significant improvements from using dropout on both thin and wide networks.
Thin 50-layer deep network even outperforms thin 152-layer deep network with stochastic
depth [12]. We additionally trained WRN-16-8 with dropout on SVHN, which achieves
impressive 1.54% on SVHN - the best published result to our knowledge. Without dropout it
only achieves 1.81%. The improvement from 2.07% to 1.85% test error on SVHN confirms
that widening is effective across large and small datasets.

Overall, despite the arguments of combining with batch normalization, dropout shows
itself as an effective techique of regularization of thin and wide networks. It can be used to
further improve results from widening, while also being complementary to it.

Computational efficiency

The rise of convolutional neural networks in deep learning is a lot due to very efficient GPU
parallel computations. Thin and deep residual networks with small kernels are against the
nature of GPU computations because of their sequential structure. Increasing width helps
effectively balance computations in much more optimal way, so that wide networks are many
times more efficient than thin ones as our benchmarks show. We use cudnn v5 and Titan X
to measure forward+backward update times with minibatch size 32 for several networks, the



10 SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS

0 20 40 60 80 100 120 140 160

101

102

tr
a
in

in
g
 l
o
ss

0

1

2

3

4

5

te
st

 e
rr

o
r 

(%
)

0

1

2

3

4

5

te
st

 e
rr

o
r 

(%
)

ResNet-50(error 2.07%)

WRN-16-4(error 1.85%)

0 20 40 60 80 100 120 140 160

101

102

tr
a
in

in
g
 l
o
ss

0

1

2

3

4

5

te
st

 e
rr

o
r 

(%
)

0

1

2

3

4

5

te
st

 e
rr

o
r 

(%
)

WRN-16-4(error 1.85%)

WRN-16-4-dropout(error 1.64%)

Figure 3: Training curves for SVHN. On the left: thin and wide networks, on the right: effect
of dropout. Solid lines denote test error (y-axis on the right), dashed lines denote training
loss (y-axis on the left).

results are in the figure 4. We show that our best CIFAR wide WRN-28-10 is 1.6 times faster
than thin ResNet-1001. Furthermore, wide WRN-40-4, which has approximately the same
accuracy as ResNet-1001, is 8 times faster. We expect WRNs to be equally or even more
efficient on other datasets too.

164 1004

85

512

thin

40-4 16-1028-10
0

100

200

300

400

500

68

164

312

ti
m
e
(m
s)

wide

5.
46
%

4.
64
%

4.
66
%

4.
56
%

4.
38
%

Figure 4: Time of forward+backward update per minibatch of size 32 for wide and thin
networks(x-axis denotes network depth and widening factor). Numbers beside bars indicate
test error on CIFAR-10, on top - time (ms). Test time is a proportional fraction of these
benchmarks.

Implementation details

In all our experiments we use SGD with Nesterov momentum and cross-entropy loss. The
initial learning rate is set to 0.1 on CIFAR (train for 200 epochs) and 0.01 on SVHN (160
epochs). Our Torch[6]-based code is available at https://github.com/szagoruyko/
wide-residual-networks.

4 Conclusions
We presented a study on width of residual networks and showed state-of-the-art results on
CIFAR-10, CIFAR-100 and SVHN only due to increased width of residual networks. We
show that wide networks with only 16 layers can significantly outperform 1000-layer deep
networks, showing that the main power of residual networks is in residual blocks, and not
in extreme depth as claimed earlier. Also, wide residual networks are several times faster to
train. We think that these intriguing findings will help further advances in research in deep
neural networks.



SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS 11

References
[1] Yoshua Bengio and Xavier Glorot. Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of AISTATS 2010, volume 9, pages 249–256,
May 2010.

[2] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Léon
Bottou, Olivier Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Ma-
chines. MIT Press, 2007.

[3] Monica Bianchini and Franco Scarselli. On the complexity of shallow and deep neu-
ral network classifiers. In 22th European Symposium on Artificial Neural Networks,
ESANN 2014, Bruges, Belgium, April 23-25, 2014, 2014.

[4] T. Chen, I. Goodfellow, and J. Shlens. Net2net: Accelerating learning via knowledge
transfer. In International Conference on Learning Representation, 2016.

[5] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). CoRR, abs/1511.07289, 2015.

[6] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for
machine learning. In BigLearn, NIPS Workshop, 2011.

[7] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua
Bengio. Maxout networks. In Sanjoy Dasgupta and David McAllester, editors, Pro-
ceedings of the 30th International Conference on Machine Learning (ICML’13), pages
1319–1327, 2013.

[8] Benjamin Graham. Fractional max-pooling. arXiv:1412.6071, 2014.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. CoRR,
abs/1502.01852, 2015.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. CoRR, abs/1603.05027, 2016.

[12] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep
networks with stochastic depth. CoRR, abs/1603.09382, 2016.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In David Blei and Francis Bach, editors,
Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pages 448–456. JMLR Workshop and Conference Proceedings, 2015.

[14] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. In NIPS, 2012.

[15] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute
for advanced research). 2012. URL http://www.cs.toronto.edu/~kriz/
cifar.html.



12 SERGEY ZAGORUYKO AND NIKOS KOMODAKIS: WIDE RESIDUAL NETWORKS

[16] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Ben-
gio. An empirical evaluation of deep architectures on problems with many factors of
variation. In Zoubin Ghahramani, editor, Proceedings of the 24th International Con-
ference on Machine Learning (ICML’07), pages 473–480. ACM, 2007.

[17] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-Supervised Nets. 2014.

[18] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR, abs/1312.4400,
2013.

[19] Guido F. Montúfar, Razvan Pascanu, KyungHyun Cho, and Yoshua Bengio. On the
number of linear regions of deep neural networks. In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2924–2932, 2014.

[20] Tapani Raiko, Harri Valpola, and Yann Lecun. Deep learning made easier by linear
transformations in perceptrons. In Neil D. Lawrence and Mark A. Girolami, editors,
Proceedings of the Fifteenth International Conference on Artificial Intelligence and
Statistics (AISTATS-12), volume 22, pages 924–932, 2012.

[21] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. FitNets: Hints for thin deep nets. Technical Report Arxiv
report 1412.6550, arXiv, 2014.

[22] J. Schmidhuber. Learning complex, extended sequences using the principle of history
compression. Neural Computation, 4(2):234–242, 1992.

[23] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. JMLR, 2014.

[25] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.
CoRR, abs/1505.00387, 2015.

[26] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the im-
portance of initialization and momentum in deep learning. In Sanjoy Dasgupta and
David Mcallester, editors, Proceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), volume 28, pages 1139–1147. JMLR Workshop and Con-
ference Proceedings, May 2013.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.

[28] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-
resnet and the impact of residual connections on learning. abs/1602.07261, 2016.


