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Abstract 

This paper addresses two major challenges in semantic segmentation for real-
world data. First, with ever-increasing semantic labels, we need a more pragmatic 
approach other than existing fully-supervised methods. Second, semantic 
segmentation for very small or rarely-appeared objects are still very challenging for 
existing methods. In this paper, we propose to (1) fully utilize the predicted label 
information from an existing supervised model and to (2) infer newly generated 
labels via label transfer from a real-world dataset. We propose a “content-adaptive” 
and “label-aware” MRF framework to jointly exploiting both the supervised and 
label-transferrable knowledge. The proposed method needs no off-line training and 
can easily adapt to real-world data. Experimental results on SIFT Flow and LMSun 
datasets demonstrate the effectiveness of the proposed method, and show promising 
performance over state-of-the-art methods under the real-world scenario. 

1 Introduction 
The goal of semantic segmentation is to assign a category label to each pixel in an image. 
Existing parametric methods [1, 2, 3, 4, 5, 6] infer the pixel-level labels based on fully-
supervised algorithms. Earlier methods [7, 8] usually train a multi-category classifier with 
a densely annotated image dataset, then assign one category label to each region (e.g., 
sliding window, superpixel, object proposal), and finally derive pixel-level labels by 
including contextual information.  

With the rapid advance of deep learning, Convolutional Neural Networks (CNN) have 
been largely included in many semantic segmentation approaches [9, 10, 11]. However, the 
idea of end-to-end dense segmentation was not considered tractable until the prominent 
approach: fully convolutional network (FCN) [1] was proposed. In [1], the fully connected 
layers in CNN models are replaced with convolutional layers; thus, given an arbitrary-
sized image, the network extracts and combines multi-resolutional layer responses to 
predict the labelling result with the same spatial dimension as the query image. Based on 
the architecture of FCN, a number of methods [3, 4, 5] are proposed to further improve the 
labelling performance. In [3], the authors proposed to refine labelling results via a fully-
connected Conditional Random Fields (CRF). In [4], instead of using bilinear interpolation 
to upsample the outputs of FCN, the authors proposed to learn a deconvolution network on 
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top of the convolutional layers of FCN. In [5], an object regularization for FCN is 
proposed to refine the mislabelled objects. 

Although existing parametric methods have achieved remarkable performance on 
datasets with a moderate size of category labels, these methods are not easy to adapt to 
real-world data. As new labels as well as new data are generated increasingly, it is 
impossible to predefine a large number of categories including every possible label. 
Moreover, even if we retrain a parametric model once new labels are given, we will need a 
large number of newly-annotated dataset for training. Therefore, nonparametric methods 
[11, 12, 13, 14, 15, 16, 17] have been proposed for semantic segmentation by transferring 
labels from similar images. Given a query image and an annotated data set, nonparametric 
methods first conduct a visual search to retrieve a set of reference images and then transfer 
labels from the reference images to the query image. Under this training-free scenario, 
nonparametric methods are more efficient and adaptive to real-world data. Nevertheless, 
because no off-line training stage is involved in nonparametric methods, their performance 
is inherently inferior to that of parametric methods.   

In this paper, we focus on semantic segmentation problem for dynamically increasing 
real-world data. The scenario we assume in this paper is that, given one parametric model 
(off-line trained with a fixed set of labels) and one annotated real-world dataset (with a 
large label set), how we should take advantage of both to predict the pixel-level labels for 
any query image. Since parametric models (e.g., FCN [1]) have been shown to achieve 
promising results for known labels, we should leverage their well-learned knowledge 
through referring to the up-to-date dataset. Although the idea of combining parametric and 
nonparametric methods seems intuitive, we have to deal with challenges in both methods 
to ensure a high-quality result. On one hand, FCN-based parametric methods perform well 
only in certain spatial scales, because they involve fixed size receptive fields but consider 
little contextual information across the whole image. Therefore, the labelling result for 
objects larger or smaller than the receptive field are usually fragmentary [5] or miss-
labelled. On the other hand, the performance of nonparametric methods is generally 
inferior to that of parametric methods and highly depends on the semantic quality of the 
reference images. Moreover, both methods usually fail to label objects of significantly 
smaller size (e.g., moon, streetlight, traffic sign), because the number of annotated pixels 
given for these labels (called “rare labels”) is negligibly smaller than that of other larger 
objects. We therefore need a good strategy to maximize the benefit from both methods and 
also tackle their different challenges.   

We propose a Markov Random Field (MRF) framework to combine (1) the knowledge 
of known labels learned from an existing FCN-based model and (2) the knowledge of all 
possible labels transferred from a set of retrieved images. Because there involves no off-
line training stage, the proposed method is efficient and adaptive to real-world data. We 
use two datasets: SIFT Flow [12] and LMSun [13], as the real-world data to evaluate the 
proposed method. Experiments demonstrate that our method achieves promising results 
even when there exist unknown labels to the parametric model.  

2 Proposed method 
Figure 1 shows the overview of our proposed method. Under the proposed scenario, we 
assume that there exists a parametric model trained with the label set	 , and a real-world 
dataset annotated with the label set	 , where	 . Because the label set  contains 
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Figure 1: Overview of the proposed method. 

new labels which are not included in	 , the parametric model alone is unable to predict 
labels	 ∈ \ . 

Given a query image	 ∈ , we model the semantic segmentation problem using 
Markov Random Field (MRF) inference. We formulate the MRF energy function over the 
field of labels , ∈  by: 

∑ 1 ∙ , , ∙ ,∈        

∑ ,, ∈ ,                                                                  (1) 

where  is the label of the pixel ,  defines the set of adjacent pixels, and  is a 
smoothing constant. The term ,  indicates the supervised potential derived by the 
parametric model; and the term ,  indicates the label transfer potential obtained 
by the nonparametric model. The pairwise potential term ∙,∙  is similarly defined as in 
[13] according to the probabilities of label co-occurrence in the real-world dataset. The 
parameter  is adaptive to different query image  so as to dynamically combine the 
two potentials. The term ,  is a label-aware parameter for balancing the priority of 
rare labels.  

We introduce the supervised potential 	 , , the label transfer potential 
	 , , and the MRF framework in Sections 2.1 – 2.3, respectively.  

2.1 Supervised potential 

In this paper, we use FCN [1] as the off-line trained fully-supervised model. Given a query 
image 	 , we derive  score maps ∈ , ∀ ∈  from FCN, and define the 
supervised potential in terms of 	  by: 

               , 	
,									for		 ∈

										0,																				otherwise
	,                                   (2) 

where min
∀ ∈ ;∀ ∈

 and max
∀ ∈ ;∀ ∈
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2.2 Label transfer potential 

As mentioned before, the real-world data contains new labels ∈ \  which are 
completely unknown to FCN. In addition, FCN is not adaptive to different object sizes 
because of its fixed size receptive field. We therefore modify the existing nonparametric 
methods [11, 14] and conduct label transfer in terms of content-adaptive windows.  

Given a query image	 , we first retrieve the top	  similar images from the real-world 
dataset using either hand-crafted features or pre-trained CNN features [18]. Next, we 
follow the similar idea in [11, 14] to transfer labels through windows. However, unlike [11, 
14], we adopt Faster R-CNN [19] to detect a set of category-independent windows and 
derive their feature representation simultaneously. For each query window	 , we search 
the top  matched windows from the 	  retrieved images using the feature representation 
derived by Faster R-CNN. Nevertheless, because the Faster R-CNN model released by [19] 
was trained with Pascal VOC dataset [20], the model works well when detecting “thing” 
windows (e.g., car) but can hardly recognize “stuff” windows (e.g., sky). To have a 
comprehensive window detector, we further collect a set of annotated “stuff” windows of 
different sizes to fine-tune the network. With the fine-tuned Faster R-CNN, our window 
detectors better characterizes various content across multiple scales in the real-world data.  

Finally, we adopt the dense alignment method [11] to align the spatial layout of the 
reference window in accordance with its matched query window. With the SIFT flow 
fields [12] between the matched window pairs, we define the label transfer potential by:  

, 	
∑ 	∑ ,∈∈ , for	 ∈ 	
																																																				0,																																																						otherwise

(3)           

where  denotes the set of windows detected by the fine-tuned Faster R-CNN from	 ,  
denote the set of detected windows from the  retrieved images,  is a matched window 
of ,  is the resized ,  indicates the window-centric coordinates of  in ,  is the 
SIFT flow vector [12] from  to , and ∙,∙  [14] transfers the label from  to .  

Thus, in Eq. (3), ,  assigns the label of the densely aligned window  
to	 ; the term  is used to penalize large windows [11]:  

 ,                                  (4) 

where  is the number of pixels in .  is similarly defined as in [14] to reflect 
the rareness of the label c in the retrieval set:  

c  ,                                     (5) 

where c  denotes the number of pixels of the label c in the retrieval set, and  is a 
constant and is set as  = 0.38 in our experiments. 

2.3 MRF framework 

We next explain how we adaptively combine the two potentials into the proposed MRF 
framework. Note that, even though there exist unknown labels to the FCN model, the 
model is unaware of this fact and will still assign one label to each pixel. We therefore 
have inconsistent labelling estimations from the two potentials and need to determine 
which one should be more reliable.   

We first define the set of labels estimated by the supervised and label transfer potentials 

as 	 ∈ argmin∀ ∈ , , ∀ ∈  and  
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(a)                    (b)                   (c) 

Figure 2: Examples of noisy labelling results with false-positive new labels (marked with 
red circles) estimated via the label transfer model. (a) Query image; (b) ground truth; and 
(c) the labelling result by the label transfer model. 

 ∈ argmin∀ ∈ , , ∀ ∈ , respectively. The estimated label 
sets  and  depend on the content of the query image  and usually contain only 
part of the original label sets, i.e., ⊆  and ⊆ . Because the fully-
supervised model generally performs well on known labels, whereas the label transfer 
model is more reliable for new labels, we propose to determine the content-adaptive 
parameter  in Equation (1) by: 

	 	

	∪	
	,                                                    (6) 

where  denotes the number of labels estimated by the label transfer model 
but are not estimated by the fully-supervised model, and ∪  denotes the 
number of labels estimated in either model. With Equation (6), we will rely more on 

,  if the two label sets   and  are consistent and will rely more on 
,  if otherwise. 

However, because the labelling result by the label transfer model is not 100% accurate, 
the difference set  may contain some false-positive new labels. An 
example is given in Figure 2, where some “new” labels are wrongly estimated. In Equation 
(6), this noisy estimation will mislead Equation (1) to heavily rely on 	 , . 
Therefore, instead of calculating the number of labels in the difference set 	

, we involve the number of pixels belonging to this difference set into consideration 
and modify Equation (6) into: 

#

	
	,                                           (7) 

where #  denotes the number of pixels in  which are estimated as 
new labels.  

In Equation (1), the term ,  concerns the “rare label” issue. We define the 
“rareness” of a label  in inverse proportion to the number of pixels estimated as the 
label	 , and assign a larger weight to the labels with less than 20% pixels in the whole 
image according to the Pareto principle [15]: 

	
2

# 	

	
∀ ∈

# 	
,					if	 ∈ 	and	

#
0.2

							1,																					otherwise																																				
	.        (8) 

Note that, in Equation (1), we do not apply  to the supervised potential , . 
Because FCN-based parametric models tend to over-segment the objects larger than 
receptive fields, we may mistakenly assign the fragmentary labels as rare labels by 
Equation (8). Therefore, we only apply  to the label transfer potential. 

Finally, we use the alpha-beta swap algorithm [21] to minimize the MRF energy 
function defined in Equation (1) and obtain the final labelling result. 
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3 Experiments 

3.1 Datasets and settings 

We use two datasets: SIFT Flow [12] and LMSun [13], as the real-world datasets to verify 
our method. SIFT Flow dataset contains 2,488 training images and 200 testing images, 
which are all outdoor scenes; all the images are of size 256	 	256 with 33 labels. LMSun is 
a large-scale dataset contains 45,176 training images and 500 testing images of indoor and 
outdoor scenes; the size of images ranges from 256	 	256 to 800	 	600 with 232 labels. 
We retrieve reference images from the 2,488 and 45,176 training images in SIFT Flow and 
LMSun, respectively; and use their corresponding testing images as the query. We set the 
number of retrieved images 	 40 , the number of matched windows 5 , and 
smoothing constant 0.02 for SIFT Flow;  120, 15 and 0.01 for LMSun. 

When testing on SIFT Flow dataset, we use FCN-8s-pascal and FCN-8s-pascal-context 
as the parametric model in two independent experiments. The SIFT Flow dataset is 
composed of outdoor scenes with | | 33 labels, whereas the parametric model FCN-8s-
pascal and FCN-8s-pascal-context are trained on Pascal VOC [20] and Pascal-Context 
datasets [22] with  21 and 59 labels, respectively. Because images in Pascal VOC 
dataset are centred objects, FCN-8s-pascal performs well on labelling “things” (e.g., car, 
boat) but covers only 7 labels (i.e., ∩ 7) out of the 33 real-world labels. The 
Pascal-Context dataset contains scene annotations; thus FCN-8-pascal-context is more 
consistent with the real-world data with	 ∩ 19 overlapped labels. 

When using LMSun as the real-world dataset, we adopt FCN-16s-siftflow and FCN-
32s-pascal-context as the parametric model. The model FCN-16s-siftflow is trained on 
SIFT Flow dataset. Thus, both FCN-16s-siftflow and FCN-32s-pascal-context models are 
capable of annotating scene content of LMSun. However, because LMSun is a large-scale 
dataset with | | 232  labels, the two parametric models cover only 32 and 55 
overlapped labels. The big challenge here is to infer the large unknown label set by the 
proposed method.  

3.2 Evaluation of the proposed method 

In Table 1, we show the per-pixel and per-class accuracy under various settings to 
investigate the effectiveness of our method. Per-pixel accuracy measures the percentage of 
correctly labelled pixels; and per-class accuracy measures the averaged per-pixel accuracy 
of all the labels. There is usually a trade-off between the two measurements, because a 
higher per-pixel accuracy shows the method performs well on most common labels, 
whereas a higher per-class accuracy reflects how well the method perform across all the 
labels (including rare labels). 

From Table 1, the overall performance of using parametric model alone is rather poor, 
because many labels in the testing datasets are unknown to the off-line trained FCN model. 
Especially, FCN-8s-pascal achieves only 0.9% per-pixel and 4.6% per-class accuracies on 
SIFT Flow. There are two major reasons: only very few labels in the overlapped label set 

∩  appear in the testing images; and the frequently-appeared labels (e.g., sky and 
sea) in the testing images are labelled as “background” in Pascal VOC. One notable 
exception is the case of FCN-32s-pascal-context on LMSun, whose 61.5% per-pixel 
accuracy is as good as state-of-the-art parametric methods. The possible reason is that,  
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Table 1: Labelling accuracy of different settings on SIFT Flow and LMSun. 

Method # labels   
Per-pixel 
acc. (%) 

Per-class 
acc. (%) 

SIFT Flow dataset  | | 33 
FCN-8s-pascal 

21 
 

∩ 7 

- - 0.9 4.6 

Proposed method 
 

FCN-8s-pascal 

0.5  31.4 33.5 
Adaptive Eq. (6)  78.5 48.9 
Adaptive Eq. (7)  82.0 48.9 
Adaptive Eq. (7) ✓ 81.7 50.0 

FCN-8s-pascal-context 

59 
 

∩ 19 

- - 71.0 29.1 

Proposed method 
 

(FCN-8s-pascal-context) 

0.5   77.6 36.9 
Adaptive Eq. (6)  76.0 37.4 
Adaptive Eq. (7)  80.4 46.7 
Adaptive Eq. (7) ✓ 79.6 47.6 

LMSun dataset  | | 232 
FCN-16s-siftflow 

33 
 

∩ 32 

- - 53.1 5.2 

Proposed method 
 

(FCN-16s-siftflow) 

0.75  63.0 13.7 
Adaptive Eq. (6) 65.1 14.2 
Adaptive Eq. (7) 65.3 16.2 
Adaptive Eq. (7)  ✓  64.5 16.4 

FCN-32s-pascal-context 

59 
 

∩ 55 

- - 61.5 11.1 

Proposed method 
 

(FCN-32s-pascal-context)

0.75 66.8 14.1
Adaptive Eq. (6) 61.6 11.1 
Adaptive Eq. (7) 66.2 16.3 
Adaptive Eq. (7) ✓  65.4 16.5 

 
since the PASCAL-Context [22] originally contains 59 most frequently-appeared labels, 
some of the common labels in the overlapped label set achieves high accuracy and 
dominates the per-pixel accuracy.  
The proposed method, when using the fixed value for  (0.5 on SIFT Flow and 0.75 on 
LMSun) in Equation (1), improves the performance significantly by transferring labels 
from similar images in the real-word dataset. When we adopt the content-adaptive	 , both 
Equation (6) and Equation (7) outperform the case of a fixed value. Moreover, the content-
adaptive parameter defined by Equation (7) outperforms the other cases, because we 
adjust	  by considering the number of pixels in the newly detected labels to compensate 
the presence of false-positive labels. Furthermore, we show that including the label-aware 
parameter  indeed addresses the rare label issue and improves the per-class accuracy. 

Figure 3 and Figure 4 show some qualitative results. These results demonstrate how the 
proposed method corrects the fragmentary labels of FCN by incorporating the label 
transfer model. For example, in the first row of Figure 3(c), some of the “road” and “sky” 
pixels are mislabelled as “sea” and “mountain” by FCN; these mislabelled pixels are 
successfully corrected by the proposed method. In Figure 4, we use the last two examples 
to demonstrate that the rare labels “window” (in the third row) and “books” (in the last row) 
can be correctly predicted with the label-aware parameter	 . 

3.3 Comparison with existing methods 

Table 2 shows the quantitative comparison of our method with existing methods testing on 
LMSun and SIFT Flow. Note that, all the parametric methods listed in Table 2 are trained  
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Table 2: Comparison with existing methods on SIFT Flow and LMSun. 

 Method 
Per-pixel 
acc. (%) 

Per-class 
acc. (%) 

SIFT Flow dataset 

Nonparametric method 

C. H. Ma et al. [11] 78.3 46.1 

F. Tung et al. [14] 77.1 41.1 

F. Tung et al. [24] 79.9 49.3 

Parametric + nonparametric method 
B. Shuai et al. [10] 80.1 39.7 

M. George [16] 81.7 50.1 

Proposed method ( ) 
FCN-8s-pascal  81.7 50.0 

FCN-8s-pascal-context 79.6 47.6 

Parametric method 
A. Sharma et al. [2] 75.5 52.8 

J. Long et al. [1] 85.6 50.1 

Proposed method ( ) FCN-16s-siftflow 85.2 52.0 

LMSun dataset 

Nonparametric method F. Tung et al. [24] 60.8 19.3 

Parametric + nonparametric method 
M. George [16] 61.2 16.0 

J. Yang et al. [15] 60.6 18.0 

Proposed method 
FCN-16s-siftflow 64.5 16.4 

FCN-32s-pascal-context 65.4 16.5 

 
under fully supervision of the whole label sets (i.e., without unknown labels) and are 
expected to perform the best among all the methods. As to the three “parametric + 
nonparametric” methods [10, 15, 16], they combine parametric and nonparametric models 
using different strategies. [16] includes an ensemble learning to train three boosted 
decision tree (BDT) models; [15] conducts an additional off-line training process for rare-
class examplers; and [10] combines a nonparametric energy term into the 
proposedparametric model. Because the off-line training process in [10, 15, 16] has 
involved all the labels in the testing dataset, there is no unknown labels to these methods. 
Instead, our proposed method involves only a subset of labels in FCN and has to infer all 
the unknown labels via the proposed MRF framework. 

On SIFT Flow dataset, our method (using FCN-8s-pascal) is compatible with [16] even 
though the parametric model FCN-8s-pascal has 26 unknown labels and the label transfer 
model uses a smaller retrieval set with 40 ( 64 in [16]). In order to fairly compare 
with parametric methods [1, 2], we conduct an additional experiment by assuming that all 
the real-world labels are known to the parametric model (i.e., ). Under this fully-
supervised scenario (i.e., using FCN-16s-siftflow as the parametric model), our method 
outperforms [2] about 9.7% per-pixel accuracy and outperforms [1] about 2% per-class 
accuracy. (The accuracy of [1] in Table 2 is conducted by the model released on Model 
Zoo website [23]). The result verifies that the proposed method effectively address the 
fragmentary and mislabel issue as well as the rare label concern. On the challenging 
LMSun dataset, even though the parametric models in our method are aware of only 32 
and 55 labels out of the whole 232 labels, our method outperforms [15] and [16] in terms 
of per-pixel accuracy. Our method also outperforms nonparametric method [24], i.e. the 
journal version of [14], in terms of per-pixel accuracy. 
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89.10% (49.76%)    95.33% (65.67%)   97.27% (74.85%) 

      
74.22% (25.44%)    67.44% (76.33%)   75.19% (80.53%) 

      
86.09% (66.18%)    80.31% (67.62%)   90.46% (76.84%) 

      
86.99% (44.91%)    81.69% (41.35%)   87.91% (47.22%) 

(a)                (b)              (c)               (d)               (e) 
Figure 3: Examples of labelling results on SIFT Flow. The numbers given below each 
image are per-pixel and per-class accuracy (in brackets), respectively. (a) Query image; (b) 
ground truth; (c) results by FCN-8s-pascal-context; (d) results by the label transfer model; 
and (e) results of the proposed method. 

      
                                                                                            64.21% (31.31%)             63.91% (30.01%)             72.10% (33.32%) 

      
                                                                                            71.25% (41.51%)             59.26% (42.81%)             73.02% (53.62%) 

       
                                                                                            45.84% (45.39%)             46.63% (30.60%)             68.60% (54.41%) 

     
                                                                                                    0% (0%)                   58.95% (60.02%)             61.69% (66.78%) 

(a)                     (b)                    (c)                     (d)                    (e) 
Figure 4: Examples of labelling results on LMSun. (a) Query image; (b) ground truth; (c) 
results by FCN-16s-siftflow; (d) results by the label transfer model; and (e) results of the 
proposed method. 
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(a)                (b)               (c) 

Figure 5: Examples of parent-child relationship between labels. (a) Query image; (b) 
ground truth; and (c) results of the proposed method.  

Table 3: Efficiency evaluation on SIFT Flow and LMSun. 

Dataset 
Supervised potential 

(sec.) 
Label transfer potential 

(sec.) 
MRF framework 

(sec.) 
Total 
(min.) 

SIFT Flow 5.07 120.33 4.58 ~ 2.2 

LMSun 6.85 484.98 53.87 ~ 9.1 

4 Discussion 
Figure 5 shows some examples where a category label is semantically divided into two or 
more sub-category labels. For example, “sea”, “bison” and “roof” predicted by our method 
actually belong to sub-category labels of “water”, “animal”, and “building” annotated in 
ground truth, respectively. However, the three cases in Figure 5 are treated as incorrect, 
because this parent-child label relationship is not yet included in the performance 
measurement. We believe further study on the semantic hierarchy may largely improve the 
accuracy of semantic segmentation. 

Table 3 shows the execution time of our method. We conduct the supervised potential 
term (via FCN [1]), image global feature (via AlexNet), and windows detection (via Faster 
R-CNN) on a single GeForce GTX 780 Ti GPU. The label transfer potential and MRF 
framework are conducted on a CPU without code optimization. Inference on LMSun is 
more time-consuming than on SIFT Flow because it involves increased number of 
windows per image, larger window retrieval set size	 , and larger number of labels. 

5 Conclusion 
In this paper, we address the semantic segmentation problem for large scale real-world 

data. Instead of retraining a fully-supervised model, we propose to combine the partial 
information learned from FCN with the label information transferred from a real-world 
dataset. To adapt to dynamic content in real-world data, we design an MRF framework to 
adaptively combine the supervised potential and the label transfer potential. Moreover, we 
include a label-aware parameter to balance the priority of rare labels. Experimental results 
demonstrate that our method achieves better per-pixel accuracy and comparable per-class 
accuracy with state-of-the-art methods on the large-scale LMSun dataset, and achieves 
comparable overall performance with nonparametric methods on the SIFT Flow dataset. 

water sea

animal bison

building roof
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