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Abstract

The focus of our work is speeding up evaluation of deep neural networks in retrieval
scenarios, where conventional architectures may spend too much time on negative ex-
amples. We propose to replace a monolithic network with our novel cascade of feature-
sharing deep classifiers, called OnionNet, where subsequent stages may add both new
layers as well as new feature channels to the previous ones. Importantly, intermediate
feature maps are shared among classifiers, preventing them from the necessity of being
recomputed. To accomplish this, the model is trained end-to-end in a principled way
under a joint loss. We validate our approach in theory and on a synthetic benchmark. As
a result demonstrated in three applications (patch matching, object detection, and image
retrieval), our cascade can operate significantly faster than both monolithic networks and
traditional cascades without sharing at the cost of marginal decrease in precision.

1 Introduction

The last several years have seen deep neural networks (DNNs) bringing tremendous rise in
performance to variety of recognition tasks. However, this often comes at a price of high
computational cost at test time, the reduction of which has recently become a hot topic in
deep learning [17, 29, 40]. Particularly in retrieval scenarios, large amount of computational
time may be spent on negative examples of varying difficulty.

A popular remedy is to set up a cascade of multiple classifiers of increasing strength,
called stages [35]. Recently, a pair of independent DNNs was used in a cascade [2, 21, 41].
Also the Region proposal network of Faster R-CNN [29] can be essentially seen as the first
stage in a two-stage cascade. While in the former case both networks receive the raw input
and build up their higher-level representation individually, in the latter case the stages are
finetuned to share their first five convolutional layers. As these are the most expensive ones
to compute [15], it is questionable whether such powerful features are always necessary.

Our observation is that these are the extreme cases of sharing. If the intermediate rep-
resentation is not reused, a representation presumably at least as powerful as before has to
be rebuilt in the following stage and the running time for positive examples suffers. On the
other hand, making the first stage use the representation of the last stage may lead to losing
time on easy negatives.
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Figure 1: Feature map sharing. Top: Two-stage OnionNet. Bottom: A corresponding non-
sharing cascade. In OnionNet, the first stage (S1, orange) shares its intermediate feature
maps (visualized as cubes) with the second stage (S2, blue). Without sharing the stages are
independent and S2 has to be evaluated fully, recomputing certain features (purple).

We address this by proposing OnionNet, a novel architecture where the next stage ex-
tends the feature map set of the previous stage, preventing repeated computation. Crucially,
the architecture is flexible: the next stage may add both new layers as well as new feature
channels, while reusing the previous ones at the same time. Thus, our stages do not have
to be of increasing depth only, even classifiers of the same depth but increasing width are
still able to share their features. To accomplish this, the model is trained end-to-end in a
principled way under a joint loss.

OnionNet is demonstrated in three important tasks: patch matching, proposal-based
object detection, and image retrieval. We achieve substantial speed-up compared to non-
cascaded baselines as well as non-sharing cascades, with only a marginal loss in precision.

As our main contributions we show that cascaded DNN may offer significant computa-
tional benefits compared to monolithic architectures, propose a novel cascaded architecture
that promotes feature sharing leading to additional computational advantages, and provide a
systematic study that sheds further light into the time cost behavior of cascaded architectures.

2 Related Work

Cascades and Sharing. Whereas in the pioneering work of Viola and Jones [35] stages are
distinct and essentially trained with hard negative mining, the soft cascades of Bourdev and
Brandt [3] are trained as a single boosted classifier where each weak learner has a cumulative
score rejection threshold. We are motivated by the general idea of stages building succes-
sively on each other and realize it in the context of DNNs. Zehnder et al. [39] share stages
among several class-specific cascades for multi-class detection, but the stages itself are inde-
pendent. In deep learning, the sharing idea of Faster R-CNN [29] comes probably the closest
to our method. However, their training is less principled than ours, using a ’4-step training
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algorithm to learn shared features via alternating optimization’. Moreover, our architecture
is more flexible, as subsequent stages can also add new feature channels besides new layers.

We also note that the term ’cascades’ is overloaded in the literature. Several authors
[12, 33, 34] speak of cascades to describe a sequence of stages, evaluated as whole, where
one stage receives the output of another and further refines it. Our cascades aim for early
rejection of negatives.

Conditional Execution. Our approach is also related to conditional evaluation of net-
works. In the hierarchical classification with HD-CNN [36], class group specialist networks
are executed based on the prediction of a group classifier, all sharing early layers. Unlike our
approach, HD-CNN aims for precision rather than speed. Dynamic Capacity Network [1]
uses an entropy-based attention mechanism to apply a more expensive network to salinient
parts of the input image for better prediction. Our work processes images as a whole and
concentrates on feature sharing instead.

Model Compression. The research on speeding up the evaluation of DNNs is related
in general, especially the works exploring redundancy in networks. Knowledge distillation
[17, 30] aims to compress models in a student-teacher framework, whereas matrix factor-
ization methods [11, 19, 40] replace weight matrices by their low-rank approximations.
Computational efficiency can be also incorporated from the beginning by imposing e.g. a
special filter structure [7] or sparse filter connectivity [18]. In a sense, we also exploit re-
dundancy present in our baselines, assuming it is possible to separate a certain amount of
layers/channels into an individual stage, which still performs reasonably well on the same
(sub)task. However, our motivation is different, we train our cascade concurrently from
scratch with the aim to use the full, combined network as the last stage as well.

3 Method

Our model is a cascade of feed-forward DNNs, called stages, evaluated sequentially at test
time. The aim of the cascade is to confidently discriminate an input example as early in the
classifier pipeline as possible, saving running time. To deal with gradually more complicated
examples, the later stages should be more refined and operate on a higher level of abstraction.

Motivation. Multiple networks of different sizes trained on the same dataset and for the
same or a similar objective raise the question whether their learned features have something
in common. Li et al. [25] confirm this for the case of different initializations of the same
network. Our major assumption is that the feature maps at a particular layer computed by
a smaller network can be approximately subsumed by the feature maps of a larger network.
Thus, the larger network can be seen as an envelope around the smaller network, adding
new feature channels or layers and (partially) reusing the features of the smaller network.
Specifically, each convolutional layer of the larger network receives the respective feature
maps from all smaller networks as an additional input. The key observation is that these are
shared and don’t have to be recomputed. Our cascade, coined OnionNet, can be pictured as
an onion, each next stage wrapping the previous.

Depth vs. Width. A natural way of constructing such a cascade might be to gradually
increase the depth only. This is principally similar to training a deeply supervised network
[23] and proceeding to deeper layers at test time until an associated ’local companion output’
rejects the example. However, the first layers are the most expensive to compute due to large
spatial size [15] while tending to produce weak classifiers due to few non-linearities [32].
Instead, we assume it is likely that early stages of the cascade don’t need as many feature
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maps as the later ones, which leads us to construct the cascade by gradually increasing the
width, possibly in addition to depth. Making a stage thin reduces the burden significantly
and permits the cascade to delay fully evaluating expensive lower layers until necessary.

In the rest of the paper, we restrict our scope to a two-stage cascade only. However, our
approach can be easily generalized to cascades with more stages.

3.1 Model Description
Our two-stage OnionNet cascade consists of two branches with the same layer organization
(Figure 1). Each takes the same input and is terminated by its own output layer. The core idea
is that the branches are linked before every convolutional layer, including the final one. The
feature maps of the first stage (S1) are used as additional input to the following convolutional
layer in the second stage (S2) but not the other way round, creating a one-way dependence.
Let nN

l denote the number of filters in the l-th convolutional layer CN
l of network N. Then

CS2
l receives its combined input of size nS1

l−1 +nS2
l−1 from both S2 and S1 and, conversely, the

output of the layer immediately preceeding CS1
l (usually a ReLU or a max-pooling layer) is

forwarded to both CS1
l and CS2

l .
In applications, OnionNet is designed as a replacement for a large monolithic network

NM. A simple way to configure a cascade is to keep the effective number of filters per layer
unchanged, i.e. splitting nM

l filters of CM
l to nS1

l and nS2
l filters, where nS1

l + nS2
l = nM

l .
Although the number of feature maps is preserved, the amount of weights decreases due to
missing connections from S2 to S1 by s2

l nS2
l−1nS1

l , where sl denotes the size of filters (common
to all NM, S1, and S2). This has the same, albeit less severe effect on both speed and accuracy
as the so-called filter groups, which arise when splitting layers among multiple GPUs [22]
or by imposing structure-induced regularization [18].

3.2 Training
Each stage is assigned its own loss function LN , evaluated on the output layer. Whereas
LS2 is application dependent, LS1 is the standard cross-entropy loss over set of S1-classes K.
OnionNet is trained jointly as a single model under the combined loss L=αLS1+(1−α)LS2,
where α ∈ (0,1) is a fixed hyperparameter, each stage having access to the full training set.
Due to feature map sharing between the branches, the weights of S1 (except for the last layer)
receive backpropagation updates from both LS1 and LS2, while the weights of S2 are trained
under LS2 only. Therefore, the major benefit of joint training is that the cascade learns the
allocation of features between the networks guided by the ratio of individual losses. In our
initial experiments with stage-wise independent training, we observed decreased accuracy of
S2 and an increased need for technical tweaks for it to properly converge.

3.3 Testing
Thresholds. We fix desired true positive rates (TPRs, recall) for S1-classes of user interest
U ⊂ K, as we care to precisely control the final accuracy rather than speed (false positive rate,
FPR). In order to choose such thresholds in a principled manner, ROC curve is computed for
each S1-class based on the score statistics over the complete training set. A test example
passes S1 if it scores above any of |U| predefined thresholds, otherwise it is rejected

Sparse Batches. Not all examples in a test batch may pass the first stage, leaving an
irregular pattern of holes for S2. Unfortunately, these cannot be easily skipped as no current
GPU backend can work with irregularly strided memory blocks. Thus, the batch as well as
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PM [37] C4(96), 3×C3(96), 3×C3(192), C2(1)
P C4(32/64), 3×C3(32/64), 3×C3(64/128), C2(2/1)
DM [22] C11(96), C5(256), 2×C3(384), C3(256), C6(4096), C1(4096), C1(21)
D C11(96), C5(256), 2×C3(384), C3(256), C6(512/3584), C1(512/3584), C1(2/21)
RM [5] C11(64), C5(256), 3×C3(256), C6(4096), C1(4096), C1(4096)
R C11(8/56), C5(32/224), 3×C3(32/224), C6(256/3840), C1(256/3840), C1(7/1000)

Table 1: Configuration of the monolitic baselines (PM for patch comparison, DM for object
detection, and RM for image retrieval) and their best OnionNet models (P, D, R). Only para-
metric layers are listed for clarity, other layers and parameters are consistent with the paper
having introduced the baseline. Fully connected layers are implemented as convolutions.
Cs(n) denotes a convolutional layer with n output filters of spatial size s× s. In OnionNets,
Cs(nS1/nS2) denotes a pair of convolutional layers: Cs(nS1) in S1 and Cs(nS2) in S2.

all shared feature maps have to be reshuffled into smaller contiguous blocks and the output of
S2 scattered back. Formalized as obtaining a single contiguous subsequence of 1s in a binary
vector with the least amount of move operations, this classic problem is solved efficiently in
just two passes over the vector.

4 Evaluation

In this section, we evaluate OnionNet in three different applications: descriptor matching,
object detection, and image retrieval.

In each application we compare the best-performing OnionNet cascade N to its respective
monolithic baseline network NM. The configurations, listed in Table 1, are designed to keep
the effective number of filters in S2 as in NM (Section 3.1). The non-sharing cascade NNS

constitutes our second baseline; its stages do not share features but have the same number of
effective filters in each stage as N.

Implementation was done in Torch [9] with cuDNN backend [8] with auto-tuning to use
the fastest convolution algorithms. Mean running time over 50 executions on NVIDIA Titan
Black is reported with its standard error. We time solely the forward pass, and not e.g. any
preprocessing or uploading of the batch. In addition, we report p̄ as the mean percentage p
of examples in a batch passing S1, which is indicative of the strength of the first stage.

4.1 Application: Comparing Patches

DNNs have been applied to comparing patches just recently, achieving state-of-the-art re-
sults. While the ultimate goal might be to learn L2 embeddings of deep descriptors [31],
comparing descriptor pairs using a matching network [14, 37, 38] and particularly process-
ing patch pairs jointly from the start were shown to be the best-performing solutions so far
[37]. However, as there are quadratically many pairs and the joint (sub)network has to be
evaluated for each comparison, such architectures seem rather impractical. Fortunately, the
expected high number of easy negative pairs makes for a natural application of OnionNet.
This holds especially true for feature point matching between images.

Setting. We evaluate on two datasets. The multi-view stereo correspondence dataset
(MVSD) of Brown et al. [4] is a balanced dataset of grayscale patches. There are three sub-
sets; we train on Notre Dame and test on Liberty and Yosemite, reporting the false positive
rate at 95% recall as in [37]. The local descriptor benchmark (LDB) of Mikolajczyk and
Schmid [27] consists of 6 images sequences with ground truth homographies. This dataset is
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FPR@95 p̄ running time [sec]
PM 0.0503 100.00% 12.111 ± 0.001
PNS 0.0514 55.44% 9.677 ± 0.005
P 0.0601 54.05% 8.407 ± 0.006

Table 2: Descriptor matching (MVSD). Av-
erage over Liberty and Yosemite subsets at
TPR=0.99 on S1. FPR@95 is FPR at TPR=0.95
on S2/baseline, p̄ is mean percentage of exam-
ples passing S1, running time is normalized per
100K examples.
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Figure 2: Descriptor matching (LDB).

expected to have an unbalanced, realistic proportion of positives and negatives. We use the
framework of [24] for evaluation, regions of interest being extracted using MSER detector.

To fully demonstrate our advantage, we experiment with “2ch-deep” model PM from
Zagoruyko and Komodakis [37]. Note that our method could also be applied to matching
networks in the same way. All models were trained from scratch for 256 epochs with LS2

being binary hinge loss and α = 0.5. ASGD with learning rate 0.1, weight decay 0.0005,
and momentum 0.9 was used to train the models with batch size 128 and random flipping.

Results. Table 2 lists the results on MVSD with TPR of S1 set to 0.991. OnionNet
outperforms its baselines in terms of running time (by 31% for PM and 13% for PNS). The
better mAP but worse running time of PNS w.r.t. P is justified in Section 5.1. Figure 2 plots
mAP and running times on LDB averaged over all types of transformations in the dataset.
The evaluation of LDB does not constrain us from choosing a larger set of TPRs: 0.99, 0.95,
and 0.90. The plot shows that under a more realistic imbalance of positive and negative ex-
amples we can archive considerable speedup (up to 2.8x) with limited decrease of precision,
which starts to show up mostly under higher transformation magnitude. This is likely caused
by discarding positives difficult due their extreme deformation, which places them near the
decision boundary.

4.2 Application: Proposal-based Object Detection
The currently dominant paradigm in object detection is to use an algorithm to generate a
set of object proposals, which are then verified by a classifier. Object proposal algorithms
are typically tuned for high recall and are often class-agnostic, which allows them to be
used as an off-the-shelf preprocessing step. This flexibility comes at a price of the classifier
having to process many proposals that are of no interest with respect to the task-specific set
of classes. For example, Fast R-CNN sifts through thousands of proposals per image [13].
Motivated by this, we propose to construct the classifer as OnionNet so that its first stage
serves as a background classifier, leaving the task of identifying the particular classes to
the second stage. Note that such a task-specific scoring can be alternatively built into the
proposal generator itself, as demonstrated by several very recent works [28, 29].

Setting. We experiment with Fast R-CNN [13] on PASCAL VOC 2007 with precom-
puted Selective Search proposals available at the author’s webpage. The baseline DM is their
’small’ AlexNet network (our reproduction scores 0.023 mAP less). Our proposal D is cre-

1Setting S1-TPR to 0.98 already made it produce enough false negatives so that the prescribed S2-TPR of 0.95
was never reached. This is mostly due to domain transfer, as the particular threshold for S1 was chosen based on
ROC curve computed on the training set of a different subset.
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ated by replacing the classifier, composed of 3 fully-connected layers, by OnionNet of the
same width, see Table 1. The classifier layers were initialized randomly in all models and
the whole networks were finetuned on trainval subset of VOC 2007 for 120k iterations using
SGD with α = 0.5, LS2 as cross-entropy loss, and learning rate 0.001, dropping to 0.0001 af-
ter 100k iterations. Bounding box regression was omitted in the implementation [26], which
does not affect conclusions from our comparison, though. We report mean average precision
(mAP) with S1 TPR fixed at 0.95.

Results. The results are listed in Table 4. OnionNet D is able to achieve 2.9x gain in
speed w.r.t. baseline DM under a graceful degradation of 0.018 mAP points, which is better
than the 1.72× speed-up attained by SVD of the weight matrices as in [13]. Note that both
methods might be combined as they are basically orthogonal. We also marginally outperform
DNS in both running time and precision.

4.3 Application: Image Retrieval
We are motivated by retrieval over ephemeral datasets, where an index building stage typical
for image retrieval [20] may be too heavy; consider e.g. a robot actively searching for a
particular object or a user wanting to copy images of only cats from his camera. Instead,
on-the-fly retrieval [6] casts such a problem as classification. However, similar to the way
human search, the system does not need to precisely label every object it knows unless it is
the object being searched for. We demonstrate that designing the classifier as OnionNet can
lead to a significant decrease in running time.

Setting. We train and validate on ILSVRC 2012 [10]. Although not perfectly suited for
retrieval scenarios due to incomplete annotations [6], we choose it because of its scale and
our concentration on quantifying relative performance improvements. We aim for retrieving
images of a certain class from the set of 50k validation images, rather than classifying all
images. Therefore, as in PASCAL VOC classification task, we report mean average precision
(mAP) over 1000 classes instead of accuracy. A test example is considered retrieved if its
true class is predicted within the top-5 softmaxed scores. TPR of S1 is fixed at 0.9. S2-classes
are partitioned into 7 S1-classes K by k-means clustering of class-averaged activation.

Experiments are performed with Alexnet-like ’CNN-F’ baseline RM from [5]. All models
were trained from scratch for 53 epochs with LS2 being 1000-way cross-entropy loss and
α = 0.5. SGD with learning rate 0.01 (reduced to 0.005, 0.001, 0.0005, 0.0001 after 18, 29,
43, 52 epochs), weight decay 0.0005 for 29 epochs, and momentum 0.9 was used to train the
models with batch size 128. As a reference, our RM achieves 19.3% top-5 error with 10 crops
on the standard ILSVRC classification task. The S1 network of our proposal R is as deep as
RM and contains 1/8, resp. 1/16 of its convolutional, resp. fully-connected filters, see Table 1.

Results. The results are listed in Table 3. OnionNet is able to cut the running time
by 41.5% while giving up only 0.049 mAP points w.r.t. baseline RM. It also saves 7% time
w.r.t. non-sharing cascade RNS, which is a fair result given the relatively low amount of shared
feature maps. The better mAP but worse running time of RNS w.r.t. R is justified in Section 5.1.

5 Discussion
In this section we conduct further analysis in order to gain insight into the properties of
OnionNet. To that end, we define multiple variants of OnionNet for the image retrieval
network RM by varying the width or depth of S1. We extend our notation by superscripts for
that: the S1 network of RWw has the width of grade w (the greater the wider), the depth d of RDd
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mAP p̄ running time [sec]
RM 0.587 100% 49.271 ± 0.117
RNS 0.551 33.52% 30.991 ± 0.307
R 0.538 32.56% 28.806 ± 0.268

Table 3: Image retrieval (ILSVRC 2012) at
TPR=0.9 on S1, p̄ is mean % of examples
passing S1, time is per dataset.

mAP p̄ running time [ms]
DM 0.499 100% 96.711 ± 0.010
DNS 0.479 2.71% 33.752 ± 0.008
D 0.481 2.65% 33.258 ± 0.003

Table 4: Object detection (VOC 2007) at
TPR=0.95 on S1, p̄ is mean % of examples
passing S1, time is per example.

mAP p̄ running time [sec]
TPR full 0.9 0.9 0.9

RM C11(64), C5(256), 3×C3(256), C6(4096), C1(4096), C1(4096) 0.587 0.587 100.00% 49.271 ± 0.117
RW3 C11(32/32), C5(128/128), 3×C3(128/128), C6(1024/3072), C1(1024/3072), C1(7/1000) 0.550 0.524 21.38% 29.864 ± 0.191
RW2 C11(16/48), C5(64/192), 3×C3(64/192), C6(512/3584), C1(512/3584), C1(7/1000) 0.558 0.528 26.34% 28.431 ± 0.241
RW1 = R C11(8/56), C5(32/224), 3×C3(32/224), C6(256/3840), C1(256/3840), C1(7/1000) 0.573 0.538 32.56% 28.806 ± 0.268
RD2 C11(64/-), C5(256/-), 3×C3(256/-), C6(7/4096), C1(-/4096), C1(-/1000) 0.565 0.536 20.76% 45.923 ± 0.189
RD1 C11(64/-), C5(256/-), C3(256/-), C3(7/256), C3(-/256), C6(-/4096), C1(-/4096), C1(-/1000) 0.493 0.470 24.35% 40.448 ± 0.220

Table 5: Image retrieval (ILSVRC 2012) with S1 networks of various width and depth. TPR
’full’ allows every example to pass S1. The configuration notation is as in Table 1. Further,
if S2 starts deeper or S1 ends shallower, missing layers are indicated by “-” and S1 networks
then contain an extra max-pooling layer before their final convolutional layer.

being denoted accordingly. First, we study how the ratio of number of filters allocated to S1
and S2 influences the overall performance. Second, we define a theoretical time complexity
and compare it to the empirical running time on a synthetic benchmark.

5.1 Trade-off Analysis

We analyze the effect of reducing the depth or width of RM by evaluating networks listed in
Table 5. The results convey that this makes S1 weaker, as measured by p̄, and S2 stronger,
as measured by mAP when S1 is deactivated and all examples pass it (column ’full’). This
is expected, as the accuracy of a network is highly dependent on the amount of allocated
filters and parameters. Regarding running time, depth reduction brings less benefit than that
of width due to lower layers being the most expensive to compute: RD2, mimicking a Faster
R-CNN-like cascade, can spare only 6.8% time.

In general, neither sharing nor non-sharing cascades are expected to reach the accuracy of
their monolithic baseline due to a non-zero false negative rate at S1. Sharing cascades trade
even more accuracy for speed by parameter reduction in S2 (Section 3.1) and shared features
serving two different objectives. It can therefore be observed in the column ’full’ that none
of the OnionNet cascades can achieve the mAP of RM. To confirm the effect of joint learning,
we increased the importance of S2 by retraining R with α = 0.25 and obtained improvement
of around 0.015 mAP points at an increase of p̄ of around 1.5% points.

5.2 Time Cost Analysis

While measuring empirical running time makes for a practical comparison, its generality is
limited due to inherent sensitivity to system (esp. GPU architecture) and implementation
factors (esp. DNN backend). Thus, we additionally investigate the theoretical time com-
plexity as introduced by He and Sun [15]. The total time complexity of convolutional layers
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Figure 3: Empirical running times (first row) and time complexities (second row) for RM-
based cascades as functions of the percentage p of examples passing S1. Sharing cascade (t)
is compared with a corresponding non-sharing baseline (tNS) and its monolithic baseline (tM).

is defined2 in the notation of Section 3.1 as O(∑2
i=1 ∑di

l=1 nSi
l−1s2

l nSi
l m2

l ), where di is number
of convolutional layers in a stage and ml is the spatial size of an output feature map.

The time cost behavior of a cascade can be best described as a function of the percentage
p of examples in a batch passing S1. We plot the costs t(p), tM(p), and tNS(p) of networks
N, NM, and NNS respectively on a synthetic benchmark where we can regulate p as necessary.
The disparity tNS− tM shows for which p a cascade is actually useful and the disparity t− tNS
reveals the margin of OnionNet due to parameter reduction and feature map sharing. Results
for prominent networks of Table 5 are shown in Figure 3 (batch size 120).

Time Complexity. The plots suggests that OnionNet always improves on time cost, as
∀p : t < tNS. Note that tNS > tM for higher values of p, i.e. non-sharing cascades are over-
performed by the monolithic classifiers at some point. The plots also convey that large S1
networks benefit from the speed-up the most (RW1 vs. RW3). Also, we can notice that S1
networks of unreduced width are very costly (RD2) even for small p values, despite the heavy
help from feature map sharing.

Running Time. The plots follow the general trend of time complexity plots, although
with some important differences. We observe that many configurations perform worse than
their monolithic baseline (t > tM) for large p, except for the configuration with the largest
S1 networks (RW3). Nevertheless, the behavior under smaller p values, i.e. those reported in
our applications, appears still very promising. We have identified two causes for such an
inconsistency between theory and practice, also reported by [11, 18]. One is a nonlinear,
nonmonotonous relation of data size and convolution running time due to some sizes being
more ’GPU friendly’. The other is the overhead of layer executions, esp. CuDNN kernel
launches, since cascades have to basically perform the forward pass twice.

To summarize the analysis, we have shown that our model is theoretically well founded,

2This definition does not involve non-convolutional layers and batch reshuffling before evaluating S2: pooling
layers “often take 5-10% computational time”[15] and the theoretical complexity of reshuffling is negligible.
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Figure 4: Empirical running times for cascades based on ImageNet ResNet-34 B network
[16] created by allocating 1/8, 1/4, or 1/2 of feature channels in each convolutional layer to
S1 and leaving the rest in S2; both stages are of the same depth. The notation is identical to
Figure 3 and the conclusions from Section 5.2 hold here as well.

although overhead of current GPU solutions has to be considered in practice, which may
render small weak classifiers ill-suited for a cascaded solution in general. Due to similar
reasons, using more than two stages turned out impractical in our initial experiments. Since
the actual benefit of a cascade varies by p, which in practice depends on the precision of
S1 at a chosen true positive rate, it was important to identify the sweet spots in practical
applications, as we successfully demonstrated above.

6 Conclusion
A novel cascade of feature-sharing deep classifiers was proposed where subsequent stages
may be extended by new layers and/or feature channels and their intermediate computations
reused. Our motivation was to speed up the evaluation by preventing similar features from
being recomputed, which led us to make each stage of the cascade equally deep. Sharing
and reduction in model parameters are the main causes of the achieved speed-up. The same
factors account for a minor decrease in precision, though. We have demonstrated good speed-
ups due to cascades in three important tasks and showed that OnionNet sharing can bring
further gain atop of it. We find this fact encouraging, as our applications seem to require some
higher-level understanding even for the easy examples, and thus massive speed-ups due to
very simple stages as in sliding-window methods should not be expected. As much deeper,
more expensive networks are being introduced [16], we believe our method might gain in
significance due to larger absolute running time savings; see Figure 4 for a preliminary time
cost analysis of a 34-layer residual network cascade.

Acknowledgments. We gratefully acknowledge NVIDIA Corporation for the donated
GPU used in this research and Sergey Zagoruyko for providing his early source code for
patch matching [37].
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