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Abstract

Several supermodular losses have been shown to improve the perceptual quality of
image segmentation in a discriminative framework such as a structured output support
vector machine (SVM). These loss functions do not necessarily have the same structure
as the segmentation inference algorithm, and in general, we may have to resort to generic
submodular minimization algorithms for loss augmented inference. Although these come
with polynomial time guarantees [11, 12, 15], they are not practical to apply to image
scale data. Many supermodular losses come with strong optimization guarantees, but are
not readily incorporated in a loss augmented graph cuts procedure. This motivates our
strategy of employing the alternating direction method of multipliers (ADMM) decom-
position for loss augmented inference. In doing so, we create a new API for the structured
SVM that separates the maximum a posteriori (MAP) inference of the model from the
loss augmentation during training. In this way, we gain computational efficiency, making
new choices of loss functions practical for the first time, while simultaneously making
the inference algorithm employed during training closer to the test time procedure. We
show improvement both in accuracy and computational performance on the Microsoft
Research Grabcut database and a brain structure segmentation task, empirically vali-
dating the use of a supermodular loss during training, and the improved computational
properties of the proposed ADMM approach over the Fujishige-Wolfe minimum norm
point algorithm.

1 Introduction
Discriminative structured prediction is a valuable tool in computer vision that has been ap-
plied to a wide range of application areas, and in particular object detection and segmenta-
tion [2, 5, 25, 27, 28, 35]. It is frequently applied using variants of the structured output
support vector machine (SVM) [38, 39] in which a domain specific discrete loss function is
upper bounded by a piecewise linear surrogate. In the case of image segmentation, this dis-
crete loss function has frequently been taken to be the Hamming loss, which simply counts
the number of incorrect pixels (see e.g. [2, 35]). Following the principle of empirical risk
minimization, one might expect that minimization of the desired loss at training time would
lead to the best performing loss at test time. However, it has recently been shown that in the
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finite sample regime, minimizing a different loss can lead to better performance even when
measured using Hamming loss [27]. In that work, a supermodular loss function was em-
ployed, and a custom graph cuts solution was found to the loss augmented inference problem
necessary for computation of a subgradient or cutting plane of the learning objective [16].

Several non-modular loss functions have been considered in the context of image seg-
mentation, e.g. the intersection over union loss in the context of a Bayesian framework [24],
an area/volume based label-count loss that enforces high-order statistics [28], or a layout-
aware loss function that takes into account the topology/structure of the object [27]. A
message passing based optimization scheme is proposed for optimizing several families of
structured loss functions [36, 37], which assumes the loss function is constructed by a gram-
mar for which the productions specify function composition [37]. In general, it is a time
consuming process to develop custom loss-augmented solvers for different combinations of
loss functions and inference procedures.

An alternative approach is to resort to generic submodular optimization algorithms, such
as that of Iwata [15] which has complexityO(n4T +n5 logM), or Orlin [26] with complexity
O(n6+n5T ), where T is the time for a single function evaluation and M is an upper bound on
the absolute value of the function. Although these optimization algorithms are polynomial,
the exponent is sufficiently large as to render them infeasible for images of even less than one
megapixel. In practice, the Fujishige-Wolfe minimum norm algorithm [11, 12] is empirically
faster [9]. However, we will show that even this state of the art optimization strategy is
infeasible for relatively small consumer images.

Specific subclasses of submodular functions come with lower complexity optimization
algorithms, and we should be able to exploit these known classes in a general learning frame-
work. Examples include decomposable submodular functions [23, 34], several notions of
symmetry [17, 29], and graph partition problems [10, 18]. A problem with the current API
for loss augmented inference is that it is assumed that the loss function will decompose with
a structure compatible to that of the inference problem. We address the case that this as-
sumption does not hold and that separate efficient optimization procedures are available for
the loss and for inference.

We propose to use Lagrangian splitting techniques to separate loss maximization from
the inference problem. Strategies such as dual decomposition have become popular in
Markov Random Fields (MRF) inference [19], while later developments such as the alternat-
ing direction method of multipliers (ADMM) [3, 6] have improved convergence guarantees.
Other strategies involving a quadratic penalty term have also been proposed in the literature
(although still with the assumption that the loss decomposes as the inference) [22]. We make
use of ADMM to separate these inference problems and apply them to a supermodular loss
function that cannot be straightforwardly incorporated in a submodular graph partition prob-
lem for loss augmented inference. Instead we allow separate optimization strategies for the
loss maximization and inference procedures yielding substantially improved computational
performance, while making feasible the application of a wide range of supermodular loss
functions by changing a single line of code.

2 Methods
We discriminatively train a graph cuts based segmentation system using a structured SVM [39].
We construct a supermodular loss function that is solvable with graph cuts, but that when in-
corporated in a joint loss-augmented inference leads to non-submodular potentials which
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causes graph cuts based optimization to fail. We therefore use an ADMM based decompo-
sition strategy to perform loss augmented inference. This strategy consists of alternatingly
optimizing the loss function and performing maximum a posteriori (MAP) inference, with
each process augmented by a quadratic term enforcing the labeling determined by each to
converge to the optimum of the sum.

The structured output SVM is a discriminative learning framework that has been applied
in diverse computer vision applications. Given a training set of labeled images {(x1,y∗1), . . . ,
(xn,y∗n)} ∈ (X ×Y)n, where Y = {−1,1}p for a binary segmentation problem, it optimizes
a regularized convex upper bound to a structured loss function, ∆ :Y×Y →R+. ∆ measures
the mismatch between a ground truth labeling and a hypothesized labeling. With ∆ provided
as an input, the structured SVM with margin rescaling minimizes [39]:

min
w,ξ

1
2
‖w‖2 +C

n

∑
i=1

ξi s.t. ∀i, ỹi ∈ Y, (1)

〈w,φ(xi,y∗i )−φ(xi, ỹi)〉 ≥ ∆(y∗i , ỹi)−ξi (2)

In the case of image segmentation, we may interpret 〈w,φ(x,y)〉 as a function that is mono-
tonic in the log probability of the joint configuration of observed and unobserved variables
(x,y) as determined by a CRF [21]. Under this interpretation, a standard definition of φ is

φ(x,y) :=
(

∑p
j=1 φu(x,y j)

∑(k,l)∈E φp(x,yk,yl)

)
(3)

where φu determines a vector of features, a linear combination of which form the unary po-
tentials of the CRF, and φp determines the pairwise potentials over a model specific edge set
E . In this work, we have set φp(x, ·, ·) : {−1,1}2→ {0,1}3 to map to an indicator vector of
three cases: (i) yk = yl = −1, (ii) yk 6= yl , or (iii) yk = yl = +1, and have placed hard con-
straints on the corresponding entries of w in the optimization of the structured SVM to ensure
that the pairwise potentials in the energy minimization problem remain submodular [41].

During training of the structured SVM, we must perform loss augmented inference in
order to compute a subgradient of the loss. In the case of margin rescaling, this consists of
computing

argmax
ỹ∈Y
〈w,φ(x, ỹ)〉+∆(y∗, ỹ). (4)

If Y is isomorphic to {−1,1}p for some p, ∆(y∗, ·) will be isomorphic to a set function
` : P(V )→R+ where P(V ) is the power set of a base set with |V |= p. In particular, we are
interested in ∆ corresponding to a supermodular set function ` [33, 40]:

Definition 1 (Supermodularity). A supermodular function is a set function ` : P(V )→ R
which satisfies: for every A,B⊆V with A⊆ B and every v ∈V \B we have that `(A∪{v})−
`(A)≤ `(B∪{v})− `(B). A function is submodular if its negative is supermodular.

As we have guaranteed that maximization of 〈w,φ(xi, ỹi)〉 with respect to ỹ corresponds
to a submodular minimization problem, the loss augmented inference as in Equation (4)
remains a submodular minimization, when ∆ is supermodular and can be aligned with the
inference, and therefore polynomial time solvable. By contrast, non-supermodular ∆ result
in NP-hard optimization problems in general.

Modular loss functions, such as Hamming loss, can be incorporated into the unary po-
tentials in a graph cuts optimization framework for loss augmented inference. However, the
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(a) An 8-connected neighborhood is used in the
construction of the loss function.

E =−

inference pairwise potential︷ ︸︸ ︷(
w00 w01
w10 w11

)
−

(
0 γ
0 0

)

︸ ︷︷ ︸
loss pairwise potential

(b) Pairwise potential construction for an edge with y∗k = +1 and y∗l = −1
following the loss function in Equation (5).

Figure 1: Non-submodularity of the joint loss augmented inference procedure using the same
mapping to a set function for inference and loss functions..

formulation of loss augmented inference with supermodular losses as a graph cuts problem
is not straightforward. Moreover, while supermodular loss functions guarantee polynomial
time solvability, they do not do so with low order polynomial guarantees in general. We
have observed that the Fujishige-Wolfe algorithm is infeasible to apply even in the case of
sub-megapixel images, and scales poorly for useful supermodular loss functions. Conse-
quently, we develop a general framework for decomposing loss augmented inference based
on ADMM. This framework solely relies on a loss function being able to be efficiently opti-
mized in isolation using a specialized solver specific to the loss function.

2.1 A supermodular loss function for binary image segmentation
We propose a loss function that is itself optimizable with graph cuts. The loss simply counts
the number of incorrect pixels plus the number of pairs of neighboring pixels that both have
incorrect labels

∆(y∗, ỹ) =
p

∑
j=1

[y∗ j 6= ỹ j]+ ∑
(k,l)∈E`

γ[y∗k 6= ỹk ∧ y∗l 6= ỹl ] (5)

where [·] is Iverson bracket notation, E` is a loss specific edge set and γ is a positive weight.
We have used 8-connectivity for the loss function in the experiments (Figure 1(a)), referred
to as “8-connected loss” in the sequel. We may identify this function with a set function to
which the argument is the set of mispredicted pixels.

Proposition 1. Maximization of the loss function in Equation (5) is equivalent to a super-
modular function maximization problem.

Proof sketch. Equation (5) is isomorphic to a binary random field model for which label is
1 iff a pixel has a different label from the ground truth. Neighboring pixels that both have
label 1 contribute a positive amount to the energy, while all other configurations contribute
zero. This corresponds to a supermodular function following Definition 1.

This loss function emphasizes the importance of correctly predicting adjacent groups of
pixels, e.g. those present in thin structures more than one pixel wide. While the pairwise po-
tential in 〈w,φ(x,y)〉 has a tendency to reduce the perimeter of the segment, the loss strongly
encourages the correct identification of adjacent pixels. We will observe in the experimental
results that the use of this loss function during training improves the test time prediction
accuracy, even when measuring in terms of Hamming loss.

It may appear at first glance that the structure of this loss function is aligned with that of
the inference, and that we can therefore jointly optimize the loss augmented inference with
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a single graph cuts procedure. Indeed, the loss function is isomorphic to a supermodular set
function, and the inference is isomorphic to a supermodular set function, both of which can
be solved by graph cuts. However, the isomorphisms are not the same. The loss function
maps to a set function by considering the set of pixels that are incorrectly labeled, while
the inference maps to a set function by considering the set of pixels that are labeled as
foreground. Shown in Figure 1 is the pairwise potential for an edge with y∗k = +1 and
y∗l =−1. If we apply a single mapping, the inference procedure can be solved by graph cuts
when the sum of the diagonal elements of E is less than the sum of the off diagonal elements.
While it is enforced during optimization that w00 +w11−w01−w10 ≥ 0, the presence of
γ in the off diagonal, for which the exact position depends on the value of y∗, removes
the guarantee of a resulting submodular minimization problem. We therefore consider a
Lagrangian based splitting method to solve the loss augmented inference problem.

2.2 ADMM algorithm for loss augmented inference
Several Lagrangian based decomposition frameworks have been proposed, such as dual de-
composition and ADMM [6], with the latter having improved convergence guarantees. We
have also observed a substantial improvement in performance using ADMM over dual de-
composition in our own experiments. Here we consider a splitting method to optimize the
minimization of the negative of Equation (4), which is equivalent to finding the most violated
constraint in cutting plane optimization:

argmin
ya,yb
−〈w,φ(x,ya)〉−∆(y∗,yb) s.t. ya = yb. (6)

and we form the augmented Lagrangian as

L(ya,yb,λ ) =−〈w,φ(x,ya)〉−∆(y∗,yb)+λ T (ya− yb)+
ρ
2
‖ya− yb‖2

2 (7)

where ρ > 0. (7) can be optimized in an iterative fashion by Algorithm 1 [6].

Algorithm 1 ADMM in scaled form for finding a
saddle point of the Lagrangian in Eq. (7)

1: Initialization u0 = 0
2: repeat
3: yt+1

a = argminya−〈w,φ(x,ya)〉+ ρ
2 (‖ya− yt

b +ut‖2
2)

4: yt+1
b = argminyb−∆(y∗,yb)+

ρ
2 (‖yt+1

a − yb +ut‖2
2)

5: ut+1 = ut +(yt+1
a − yt+1

b )
6: t = t +1
7: until stopping criterion satisfied

The saddle point of the Lagrangian
will correspond to an optimal solu-
tion over a convex domain, while we
are optimizing w.r.t. binary variables.
Strictly speaking, we may therefore
consider the linear programming (LP)
relaxation of our loss augmented infer-
ence problem, followed by a rounding
post-processing step. We use a stan-
dard stopping criterion as in [6]: the
primal and dual residuals must be small
with an absolute criterion εabs = 10−4

and a relative criterion ε rel = 10−2. In
practice, we have found that discretizing the quadratic terms and incorporating them into
the unary potentials of the respective graph cuts problems is more computationally efficient,
while yielding results that are nearly identical with exact optimization with a primal-dual
gap of 0.01%. We show in the experimental results that this strategy yields results almost
identical to those of an LP relaxation.

In general, we simply need task-specific solvers for lines 3 and 4 of Algorithm 1. These
solvers need not use a single graph cut algorithm, and can therefore exploit any available
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2: Example images and the extracted features. 2(a) original RGB image; 2(b)
groundtruth; 2(c) the user-labelled seeds; 2(d) the extended seeds; 2(e) the distance features
to foreground seed based on RGB space; 2(f) the distance features to background seed based
on RGB space; 2(g) the GMM appearance model based on RGB space; 2(h) the distance
features to foreground seed based on the RGB-space GMM appearance.

structure even though it may not be present, or aligned, between the two subproblems. Al-
though we have used this framework for the specific supermodular loss function described
in the previous subsection, we note that this provides an API for the structured output SVM
framework alternate to that provided by SVMstruct [39].

3 Experimental Results

Eval.
γ = 0.25 ∆(1e3) 0-1(1e3) IoU

Tr
ai

n. ∆ 6.3562±1.065 3.3378±0.5462 0.2111±0.0152
0-1 7.8641±1.0437 4.1548±0.5378 0.2399±0.0170

Eval.
γ = 0.5 ∆(1e3) 0-1(1e3) IoU

Tr
ai

n. ∆ 9.0483±1.3457 3.2801±0.4687 0.2079±0.0155
0-1 11.582±1.5495 4.1548±0.5378 0.2399±0.0170

Eval.
γ = 1.0 ∆(1e3) 0-1(1e3) IoU

Tr
ai

n. ∆ 14.908±2.4102 3.4145±0.4108 0.2084±0.0160
0-1 19.019±2.5613 4.1458±0.5378 0.2399±0.0170

Table 1: The cross comparison of average
loss values (with standard error) using differ-
ent loss functions during training and during
testing on the Grabcut dataset. Training with
the same supermodular loss functions as used
during testing yields the best results. Training
with supermodular losses even outperforms
the Hamming loss in terms of evaluating by
Hamming loss.

In this section, we consider a fore-
ground/background segmentation task. We
compare the prediction using our proposed
supermodular loss function with the pre-
diction using Hamming loss. We show
that: (i) our proposed splitting strategy is
orders of magnitude faster than the mini-
mum norm point algorithm; (ii) our strat-
egy yields results nearly identical to a LP-
relaxation while being much faster in prac-
tice; and (iii) training with the same super-
modular loss as during test time yields bet-
ter performance.

Datasets The dataset provided by [4, 14]
contains 151 images in total, including the
color images in RGB space, the ground
truth foreground/background segmentation
and the user-labelled seeds (see Figure 2(a),
Figure 2(b), and Figure 2(c), respectively).
As we are discriminatively training a class specific segmentation system in our experiments,
we focus on the images in which the foreground objects are people. We compute in total 18
unary features following [27]. Figure 2(e) to Figure 2(h) show examples of the extracted
features.

We additionally utilise the Internet Brain Segmentation Repository (IBSR) dataset [30],
which consists of T1-weighted MR images. Images and masks have been linearly registered
and cropped to 145×158×123. We choose one horizontal slice within each volume and we
follow the feature extraction procedure as in [1].
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Eval.
γ = 0.5 ∆(1e3) 0-1(1e3) IoU

Tr
ai

n. ∆ 2.616±0.612 1.297±0.224 0.169±0.018
0-1 2.885±0.765 1.393±0.279 0.173±0.019

Table 2: The cross comparison of average loss
values on IBSR dataset (cf. comments for Ta-
ble 1).

Training and Testing We use the ADMM
splitting strategy to solve the minimiza-
tion problem in Equation (6). We use
the GCMex - MATLAB wrapper for
the Boykov-Kolmogorov graph cuts algo-
rithm [7, 8, 13, 18] to solve the optimization
problems on lines 3 and 4 in Algorithm 1,
i.e. for the inference part and for the loss
part separately. Results computed with different values of γ > 0 are shown in Table 1 and
Table 2. During the training stage, we use ρ = 0.1 for the ADMM step-size parameter.
The regularization parameter C in Equation (1) is chosen by cross-validation in the range
{10i|− 2 ≤ i ≤ 2}. We additionally train and test with Hamming loss as a comparison. At
test time, we have computed the unnormalized Hamming loss, the intersection over union
loss (IoU), and our 8-connected loss for each training scenario. We have performed several
random train-test splits in order to compute error bars on the loss estimates.

Computation Time We compare the time of one calculation of the loss augmented infer-
ence by the ADMM algorithm and by the minimum norm point algorithm [12] (MinNorm).
For MinNorm, we use the implementation provided in the SFO toolbox [20]. Although it has
been proven that in t iterations, the MinNorm returns an O(1/t)-approximate solution [9],
the first step of this algorithm is to find a point in the submodular polytope, which alone
is computationally intractable even for small 600× 400 pixel images. Therefore, we mea-
sure the computation time on downsampled images, showing the growth in computation as a
function of image size (Figure 5 and Figure 6). The running times are recorded on a machine
with a 3.20GHz CPU. Similarly, a dual-decomposition baseline took orders of magnitude
longer computation than the ADMM approach, following known convergence results [6].

Results As shown in Table 1 and Table 2, training with the same supermodular loss as used
for testing has achieved the best performance. Training with the supermodular loss even out-
performs training with Hamming loss when measured by Hamming loss on the test set, with
a reduction in error of 17.2%. A Wilcoxon sign rank test shows that training with ∆ gives
significantly better results in all cases (p ≤ 2× 10−3).We have additionally tried training
with a joint graph cuts loss augmented inference using the pairwise potentials illustrated in
Figure 1. However, due to the non-submodular potentials, the graph cuts procedure does not
correctly minimize the energy resulting in incorrect cutting planes that causes optimization
to fail after a small number of iterations. The performance of this system was effectively
random, and we have not included these values in Table 1.

Qualitative segmentation results are shown in Figure 3, and in Figure 4 we show a pix-
elwise comparison of the predictions. The 8-connected loss achieves better performance on
the foreground/background boundary, as well as on elongated structures of the foreground
object, such as the head and legs, especially when the appearance of the foreground is similar
to the background.

We measure the computation time for 120 calculations of the loss augmented inference
by ADMM and MinNorm on different sized images. From Figure 5 and Figure 6 we can
see that ADMM is always faster than the MinNorm by a substantial margin, and around
100 times faster when the problem size reaches 103. The computing time for both ADMM
and MinNorm vary approximately linearly in log-log scale, while MinNorm has a higher
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(a) groundtruth (b) Hamming (c) 8-connected (d) groundtruth (e) Hamming (f) 8-connected

(g) groundtruth (h) Hamming (i) 8-connected (j) groundtruth (k) Hamming (l) 8-connected

(m) groundtruth (n) Hamming (o) 8-connected (p) groundtruth (q) Hamming (r) 8-connected

Figure 3: The segmentation results of prediction trained with Hamming loss (columns 2
and 5) and our supermodular loss (columns 4 and 6). The supermodular loss performs better
on foreground object boundary than Hamming loss does, and it achieves better prediction on
the elongated structures of the foreground object e.g. the heads and the legs.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

g =−1
h =−1
s =−1

g =+1
h =−1
s =−1

g =−1
h =+1
s =−1

g =+1
h =+1
s =−1

g =−1
h =−1
s =+1

g =+1
h =−1
s =+1

g =−1
h =+1
s =+1

g =+1
h =+1
s =+1

Figure 4: A pixelwise comparison of the ground truth (denoted g in the legend), the predic-
tion from training with Hamming loss (denoted h) and the prediction when training with the
proposed supermodular loss (denoted s). There are many regions in the set of images where
the supermodular loss learns to correctly predict the foreground when Hamming loss fails
(orange regions corresponding to g = +1, h = −1, and s = +1). (a)-(h) show the semantic
segmentation task [14], while (i)-(j) show the structural brain segmentation task [30].
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(a) Size=600
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(b) Size=1200
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(c) Size=2400
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(d) Size=4800

Figure 5: The computing time for the loss augmented inference, on different problem
sizes. The red histograms stands for ADMM and the blue for MinNorm. The calculation
by ADMM is always faster than by MinNorm, and there is no overlap between the comput-
ing time by the two methods.

−E size = 600 size = 1200 size = 2400
ADMM 2.28±0.58 0.035±0.002 0.051±0.002 0.864±0.476

LP 2.29±0.57 1.857±0.128 3.946±0.286 13.57±1.359
Table 3: The comparison between ADMM and an LP relaxation for solving the loss aug-
mented inference. The 1st column shows the optimal energy values (103) (Equation (4));
columns 2–4 show the computation time (s) for one calculation on downsampled images of
varying size.

slope, suggesting a worse big-O computational complexity. We note that theoretical bounds
on MinNorm are currently weak and the exact complexity is unknown [9]. Although it is
immediately clear from Figure 6 that ADMM is substantially faster than the minimum norm
point algorithm, we have performed Wilcoxon sign rank tests that show this difference is
significant with p < 10−20 in all settings.

600 1200 2400 4800

Problem Size

10-2

10-1

100

101

R
u

n
n

in
g

 T
im

e
 [

s
]

ADMM

min-norm

Figure 6: Computation time.
ADMM is substantially faster
than the min-norm algorithm.

We also ran a baseline comparing non-submodular
loss augmented inference with the QPBO approach [31].
We computed pairwise energies as in Figure 1(a). QPBO
found loss augmented energies across the dataset of 1.1×
106±3×105 while ADMM found loss augmented ener-
gies of 3.7×106±8×105, a substantial improvement.

Comparison to LP-relaxation We additionally com-
pare ADMM to an LP relaxation procedure for the loss
augmented inference to determine the accuracy of our op-
timization in practice, with using the 8-connected loss
function and the Hamming loss (0-1). For the imple-
mentation of the LP relaxation, we use the UGM tool-
box [32]. We show in Table 3 the comparison between
using ADMM and the LP relaxation. The first column
represents the energy achieved by the loss augmented inference (Equation (4)). We observe
that the (maximal) energy achieved by ADMM is almost the same as the LP relaxation: a
difference of 0.4%. Columns 2–4 show the computing time for one calculation of the loss
augmented inference on the downsampled images. Using an LP relaxation, the computa-
tion time is orders of magnitude slower, growing as a function of the image size. ADMM
provides a more efficient strategy without loss of performance.
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4 Discussion and Conclusion
A somewhat surprising result in Table 1 is that training with the supermodular loss results in
better performance as measured by Hamming loss. This has been previously observed with
a different loss function by [27, 28], and indicates that in the finite sample regime a super-
modular likelihood can result in better generalization performance. This holds, although the
model space and regularizer were identical in both training settings. We believe that further
exploration of the properties of supermodular loss functions is warranted in this regard.

Our results in terms of computation time give clear evidence for the superiority of ADMM
inference when a specialized optimization procedure is available for the loss function. As
shown in Figure 6, the Fujishige-Wolfe minimum norm point algorithm does not scale to
typical consumer images (i.e. several megapixels), which indicates that loss functions for
which a specialized optimization procedure is not available are likely infeasible for pixel
level image segmentation without unprecedented improvements in general submodular min-
imization. Figure 6 shows that the log-log slope of the runtime for the min-norm point
algorithm is higher than for ADMM, suggesting a worse computational compexity. One
may wish to employ the result that early termination of the min-norm point algorithm gives
a guaranteed approximation of the exact result, but even this is infeasible for images of the
size considered here. Joint graph-cuts optimization for loss augmented inference results in
non-submodular pairwise potentials and graph-cuts fails to correctly minimize the joint en-
ergy. As a result, a cutting plane optimization of the structured output SVM objective fails
catastrophically, and the resulting accuracy is on par with a random weight vector.

In this work, we have shown that a supermodular loss function achieves improved perfor-
mance both in qualitative and quantitative terms on a binary segmentation task. We observe
that a key advantage of the proposed supermodular loss over modular losses, e.g. Hamming
loss, is an improved ability to find elongated regions such as heads and legs, or thin articu-
lated structures in medical images.

Previous to our work, specialized inference procedures had to be developed for every
model/loss pair, a time consuming process. Our proposed ADMM algorithm provides a strat-
egy to solve the loss augmented inference as two separate subproblems. This provides an al-
ternate API for the structured output SVM framework to that of SVMstruct [39]. We envision
that this can be of use in a wide range of application settings, and an open source general pur-
pose toolbox for this efficient segmentation framework with supermodular losses is available
for download from https://github.com/yjq8812/efficientSegmentation.
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