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Abstract

Shape recovery from shading information has recently regained importance due to the
improvement towards making the Photometric Stereo technique more reliable in terms
of appearance of reflective objects. However, although more advanced models have been
lately proposed, 3D scanners based on this technology do not provide reliable reconstruc-
tions as long as the considered irradiance equation neglects any additive bias. Depending
on the context, such bias assumes different physical meanings. For example, in murky
water it is known as saturated backscattered effect or for acquisition in pure air medium
it is known as ambient light. Although the theoretical part covers both cases, this work
mostly focuses on the pure air acquisition case. Indeed, we present a new approach based
on ratios of differences of images where an exhaustive set of physical features are tack-
led while dealing with Photometric Stereo acquisition with considerable importance for
the ambient light. To the best of our knowledge, this is the first attempt to recover the
shape from Photometric Stereo considering simultaneously perspective viewing geome-
try, non-linear light propagation, both specular and diffuse reflectance plus the additive
bias of the ambient light. Proof of concept is provided by showing experimental results
on synthetic and real data.

1 Introduction
Photometric Stereo (PS) can be seen as an evolution of the Shape from Shading (SfS) prob-
lem [12] where the ambiguity of retrieving the shape using shading information from a single
image can be resolved by adding more images under different illumination conditions. There
is an extensive literature on PS. Starting from the work by Woodham [32], PS has been stud-
ied for over three decades. However, until recently most approaches have relied on numerous
simplifying assumptions such as orthographic viewing geometry, uniform directional light-
ing and the Lambertian model for the surface reflectance. In addition, the environment where
the images are acquired is assumed dark, considering negligible ambient light.

On the contrary, in this work we introduce a PS method which simultaneously relaxes
all the aforementioned assumptions. We deal with ambient light as an additional pixel-wise
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component to the usual irradiance model (abusively referred to as BRDF in the following)
depending on the light direction l, the outgoing normal to the surface n and the viewing
direction v as follows

I(x,y) = IBRDF(l,n,v)+A(x,y). (1)

Our choice of tackling ambient light is motivated by two recent applications of PS: real
time 3D-reconstruction [9], and PS in open environments (outdoor PS [14], or PS in a scat-
tering medium such as murky water [22]). The usual approach to deal with ambient light
consists of capturing an image without any artificial lights first, and then substracting it from
all the images. However, it is not possible to apply such a preprocessing in real time PS,
where the shape information is extracted from a single RGB image of a commercial camera
sensor [6, 9]. In addition, it is impossible to have a priori knowledge of the ambient light if it
appears only when the artificial lights are on, as it is the case with back scattering in murky
water [30, 31]. To deal with these issues, we introduce a framework for PS in ambient light
which does not require any preprocessing step.

Contribution We propose a new approach for the PS which allows 3D reconstructions
that have data with a complete list of physical features that are not negligible when images
are taken in outdoor scenes. We extend the model presented in [19] which includes per-
spective viewing geometry and point light source parameterization for diffuse and specular
reflectance, by considering non-negligible ambient light as in Equation (1). In Sec. 2 we
briefly review relevant works in the same field while Sec. 3 describes the mathematical
modeling of the proposed approach. The numerical solver is presented in Sec. 4 and lastly,
Sec. 5 shows the experimental validation of the proposed approach over synthetic and real
data.

2 Related Works
The Lambertian assumption assumed in most of the literature regarding PS is not realistic for
a large number of materials as shown in [23]. In order for diffuse reflection to be a reliable
model for any surface, Wu et al. [33] introduced an image preprocessing based on low-rank
matrix factorization. On the other hand, Johnson et al. [17, 18] developed an elastomer that
is attached to the surface to change its BRDF. Another attempt to deal with more complicated
reflectance functions is by Alldrin and Kriegman [2], who overcome the standard reflectance
assumptions by realizing that for an isotropic material the BRDF will experience bilateral
symmetry. Hertzmann and Seitz [10] removed the need for an explicit BRDF model by
comparing object images with images of reference objects. Another strategy involves keep-
ing the Lambertian assumption, while estimating the normal field in a robust manner, for
instance using sparsity-enhancing estimators [15]. This is possible as long as the number
of images is high enough, which is a valid assumption in outdoor PS approaches consider-
ing the sun as a moving light source [1, 11, 14, 28]. Indeed, works considering PS in open
environments acquired hundreds of images in order to have redundant information on the
geometry of the object(s), thus getting around the lack of properly modeling environmental
interference. In order to eventually obtain a depth map, all these approaches must be fol-
lowed by an integration step [8]. This final step can be avoided by resorting to a differential
approach, as described in the next paragraph.

With the aim to overcome these difficulties, PDEs-based approaches, derived by com-
bining the differential PS formulation with image ratios, were recently applied to more com-
plicated models as shown by Mecca et al. [20]. The method of the image ratios has also
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been used by Jacobs et al. [16] to show that for any two images there is always an object
and two lighting conditions consistent with these images. It should be noted that the use of
ratios makes the approach very sensitive to noise. As a result Chandraker et al. [7] require
a very specialised set-up and present results on simple data sets only. To ensure robustness,
variational approaches aimed at solving a system of PDEs independent from the albedo were
recently proposed [19, 27, 29].

Yet, all these PS approaches assume ambient light free environments. The concept of
ambient light basically covers all the unexplained secondary reflections between the surface
and the environment, which may be either due to stray lights, inter-reflections or back scat-
tering, and are thus difficult or impossible to model in closed-form. Such deviations induce
a systematic additive bias of the linear model which can be modeled as (Equation 1) where
A(x,y) represents the unexplained bias that could be dependent on the light source l itself.
A relatively simple way to account for this bias is by using a spherical harmonics model for
the lighting [3]. Such a model was used by Basri et al. [4] to tackle the problem of unknown
and non directional lighting for a Lambertian object. Using spherical harmonics decompo-
sition, it was shown that the surface normals lie on a low-dimensional space spanned by
the principal components of the image. In particular, a four harmonics model may describe
rather well the combination of directional lighting and “ambient” lighting. Such a model
was recently used by Or-El et al. [24] in order to apply SfS under “natural” illumination.
Yet, such spherical harmonics models prevent one from using closed form expressions for
non-directional lightings, e.g. the pointwise source model accounting for radial propagation
of light and inverse of squared distance light attenuation.

Instead, in this work, we assume that the ambient light consists of a non-uniform scalar
field, which is independent from l. Although it cannot be justified physically that mutual
reflections, or backscatter lightings, are independent from the lighting, this approximation
is numerically tractable, and was already successfully used in [22, 31, 34]. In the literature,
such an ambient term was accounted for using two different strategies: offline calibration or
online estimation. The former strategy simply consists of capturing an image in the “dark”
(i.e. with no active lights turned on). This “ambient image” can then be subtracted from the
PS images to create “ambient-free” images.

The other strategy consists in estimating A(x,y) along with the surface characteristics.
The classic pixelwise PS estimation is simple to extend: the new recovery problem is another
linear system of diffuse irradiance equations accounting A(x,y) as unknown whose solution
is uniquely defined as long as the number of images is at least 4 and the rank of the system
is 4. The fourth component of the unknown vector is the ambient light, and its first three
components represent the surface normals scaled by the albedo. This is essentially the same
strategy as the approach of Yuille et al. in [34], although they extend this procedure to the
uncalibrated PS problem. However, this approach relies on the restrictive assumptions of
directional lighting as well as a Lambertian surface reflection, and it is expected to perform
poorly if these assumptions are violated.

Hence, all existing methods to handle ambient light in PS lack flexibility. Thus, there
is still a need for a technique that can be applied to more general scenarios. Our aim in
this paper is to fill this gap providing an approach able to deal with complex non-linear
phenomena occurring while considering open environment.

3 Dynamic Ambient Light Removal
PS is generally modeled considering restrictive assumptions in order to deal with a reason-
able amount of non-linearity describing the image reflection model. Usually, physical based
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BRDF models are very complicated to invert as required for shape reconstruction. With the
aim of considering non-linearities reasonable to deal with, we use the irradiance equation in-
troduced by Mecca and Quéau [19] which tackles most of the physical effects involved in the
image formation model such as perspective viewing geometry, radial propagation, light at-
tenuation and both diffuse and specular reflection by unifying the Lambertian shading model
[13] with the Blinn-Phong one [5, 26]. In this work we propose a PS modeling with the
following irradiance equation for the ith light source placed at point (ξi,ηi,ζi):

Ii(x,y) = ρ(x,y)ai(x,y,z)(n(x,y) ·hi(x,y,z))
1

c(x,y) +A(x,y) (2)

where ρ is the albedo, c is a material property in (0,1] determining the shininess and ai is
the light attenuation parametrized as follows

ai(x,y,z) =
φiaai(x,y,z)
|li(x,y,z)|2

(3)

where
aai(x,y,z) = (li(x,y,z) ·pi)

µ (4)

takes inspiration from [20], pi is the principal lighting direction of the source (i.e. its orien-
tation), φi is the illuminance of the source and

li(x,y,z) = X(x,y)− (ξi(x,y),ηi(x,y),ζi(x,y)) (5)

is the light direction for the surface point X, assuming the light position (ξi,ηi,ζi) to be
known. For the real world experiments, the parameter µ ≥ 0 is given by the datasheet of the
LEDs used in the setup.

Using the notation · for a general unit vector, we define the normal vector n = n
|n|

parametrized according the notation provided in [25]:

n(x,y)=
(

∇z(x,y),− f+z(x,y)
f

− (x,y)·∇z(x,y)
f

)
, (6)

and the hi vector is defined as:

hi(x,y,z) = li(x,y,z)+min
{

1,
|1− c(x,y)|

ε

}
v(x,y) (7)

where ε is a material-related parameter (we took ε = 0.01 in our experiments directly follow-
ing [19]). We consider the definition of the other quantities from [21] having the following
viewer direction

v(x,y) = (x,y,− f ). (8)

We remark that in our irradiance equation, the ambient light A(x,y) is considered as a
pixel-wise unknown of the problem. By assuming that it is independent from li, it can be
cancelled out by considering the ratios of image differences, as described hereafter. With
the aim to consider a readable ratio of images, we avoid as much as possible to write the
dependencies of the functions from now on and we preliminary manipulate the irradiance
equation as follows:

(Ii−A)c = (ρai)
cn ·hi. (9)

Considering the Binomial expansion of the left hand side:
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(Ii−A)c = Ic
i − cAIc−1

i +
c(c−1)

2
A2Ic−2

i + . . . (10)

and truncating this expansion to the first order, we obtain after some algebra:

Ii− cA≈ ρcγi
n
|n| ·hi (11)

where γi =
ac

i
Ic−1
i

. We remark that, in the pure diffuse case (i.e. c = 1), there is no need for

Binomial expansion and truncation. This makes the model more accurate in the framework
where most of the research about PS focuses on. From a practical point of view, as ambient
light only makes up a small portion of the total reflected light, the error committed by con-
sidering a first order truncation is reasonably negligible. For example, if I

A = 4 and c = 0.5
then the third term of the expansion is 6.25% of the second. Now, we consider two pairs
of irradiance equations, namely the ith, jth and the qth, rth in order to let the ambient light
cancel out together with the albedo while taking ratio as follows:

Ii− cA− I j + cA
Iq− cA− Ir + cA

≈
ρc

|n|
[
γin ·hi− γ jn ·h j

]

ρc

|n|
[
γqn ·hq− γrn ·hr

] (12)

that is
Ii− I j

Iq− Ir
≈ γin ·hi− γ jn ·h j

γqn ·hq− γrn ·hr
. (13)

By substituting the parameterization of the normal from Equation 6, Equation 13 yields the
following quasi-linear PDE:

b1(x,y,z)
∂ z
∂x

+b2(x,y,z)
∂ z
∂y

= s(x,y,z) (14)

with:

b1 = (Iq− Ir)

[
γi

(
h

1
i −

x
f

h
3
i

)
− γ j

(
h

1
j −

x
f

h
3
j

)]
− (Ii− I j)

[
γq

(
h

1
q−

x
f

h
3
q

)
− γr

(
h

1
r −

x
f

h
3
r

)]
,

(15)

b2 = (Iq− Ir)

[
γi

(
h

2
i −

y
f

h
3
i

)
− γ j

(
h

2
j −

y
f

h
3
j

)]
− (Ii− I j)

[
γq

(
h

2
q−

y
f

h
3
q

)
− γr

(
h

2
r −

y
f

h
3
r

)]
,

(16)

s =
f + z

f

[
(Iq− Ir)

(
γih

3
i − γ jh

3
j

)
− (Ii− I j)

(
γqh

3
q− γqh

3
q

)]
. (17)

As a final note, it is possible to increase the accuracy of the truncation: as differences
of pairs of images cancel out the first order remainder of the expansion, it is not hard to
see how weighted quadruples of images can cancel up to the second order remainder of the
expansion. Furthermore, the same approach can be applied to Taylor expansions of more
physical BRDFs and this is left as a future work.

4 Variational resolution
In order to ensure robustness to noise (camera thermal noise, quantization) and to outliers
(shadows, depth discontinuities, specularities not consistent with the Blinn-Phong model),
we follow the variational approach from [19]. This approach solves the system of quasilinear
PDEs (13) in an approximate manner, in the sense of the algebraic error (L1 norm). Denoting
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by bd =
[
bd

1 ,b
d
2
]> and sd the quantities in (15), (16) and (17) associated to the d-th ratio of

differences, this variational problem reads:

min
z ∑

d

∥∥∥bd ·∇z− sd
∥∥∥

L1(Ω)
+µ ‖z− z0‖L2(Ω) (18)

where ‖·‖L1(Ω) is the L1 norm over Ω, ∇z is the gradient of z, z0 is some prior depth esti-
mate and µ > 0 controls the influence of this regularization term, which basically ensures
numerical stability (in our experiments, we used µ = 10−6 and a constant value for z0).

In order to apply the ADMM scheme proposed in [19], the bd
1 , bd

2 and sd must be known,
which is not the case when c 6= 1 or if the lighting is not directional. Hence, we embed
the resolution of the variational problem (Equation (18)) into a fixed point algorithm, where
these coefficients are iteratively refined. As described in [19], by embedding the ADMM
scheme in a fixed point algorithm, the depth update comes down to solving a linear system
of equations, which can be solved, e.g., by means of Gauss-Seidel iterations. We note that
the variation problem is discretised with finite differences and that no boundary condition is
required ([27]). The photometric stereo problem is summarized in Algorithm 1.

Algorithm 1: Ambient PS
Input : A sequence of images with light sources and rough mean distance z0
Output: Depth map z, shininess parameter c
Initialize zk = z0, ck = 1;
while | zk+1− zk |> 10−4× | zk | do

calculate fields ak(zk,ck), hk(zk,ck) ;
calculate fields b(zk,ak,hk), s(zk,ak,hk) ;
Solve variational problem for zk+1 ;
Re-calculate fields ak(zk+1,ck), hk(zk+1,ck) ;
Estimate ck+1(zk+1,ak,hk)

end

The update of the fields a, h, b and s comes in a straightforward manner from their defi-
nition. The update of the shininess parameter c (final step in Algorithm 1) is less straightfor-
ward, and hence it is detailed hereafter. Starting again from the irradiance Equation (2) (be-
fore considering the Taylor expansion) and taking a ratio of the difference of equations i, j
to q,r, we get:

Ii− I j

Iq− Ir
=

ai(n ·hi)
1
c −a j(n ·h j)

1
c

aq(n ·hq)
1
c −ar(n ·hr)

1
c
. (19)

Expanding out Equation (19), we get:

(Ii− I j)aq(n ·hi)
1
c − (Ii− I j)ar(n ·h j)

1
c − (Ir− Iq)ai(n ·hq)

1
c +(Ir− Iq)a j(n ·hr)

1
c = 0 (20)

which is of the form ∑4
n=1 DnMx

n = 0, with Dn,Mn known and x = 1
c . Equation 20 cannot

be solved analytically; it can, however, be solved numerically with the Newton-Raphson
method. In addition, too small (<0.1) or too large (>1) values of c are treated as outliers and
are not updated (ck+1 = ck). Finally, the new c map is convolved with a Gaussian filter of
size 21 pixels and standard deviation σ = 8 pixels (those values were found experimentally
to provide the best results). This step, which reduces the effect of ouliers, is consistent with
the assumption that the material distribution is smooth.
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5 Experimental Part
We evaluated our algorithm on both synthetic and real data. Synthetic data where made with
OpenGL directly implementing Equation 2. The resolution of all the synthetic data was set
to 800x600 pixels in order to match our real camera. For synthetic model, we took "bimba"
from the AIM@Shape Repository.

We compare our method against Yuille et al. [34], Ikehata et al. [15] and Mecca and
Quéau [19]. For [15, 19], we used their original code whereas for [34] we used our imple-
mentation. In addition, we used our variational solver (see Section 4) in order to numerically
integrate the normal maps produced by [15, 34].

5.1 Synthetic Data
First of all, we generated synthetic data (Figure 1) with a simplified image formation model
including orthographic viewing geometry, directional illumination and Lambertian reflec-
tion. This was done in order to have a fair comparison with Yuille et al. [34] and Ikehata
et al. [15]. We used the "Lena" image for the albedo. The ambient light was set to grow
linearly from bottom-left to up-right to up to 45% of the maximum intensity value.

(a) Sample 1 (b) Sample 2 (c) Albedo (d) Ambient Light

Figure 1: 2 out of the 24 images of our simplified synthetic dataset rendered with ortho-
graphic geometry, directional lighting and Lambertian reflection.

The reconstructions are shown in Figure 2. Quantitative evaluation is performed by com-
paring the generated normal maps with the ground truth (Figure 3). For [19] and our method
the normals are calculated using finite differences of the depth map.

Our approach clearly outperforms [15, 19] as these methods suffer from the additive
bias of the ambient light which has a flattening effect on the reconstruction. We also have
a slightly smaller mean normal error than [34] (8.5◦vs 11◦) and this is probably because of
the use of the robust variational solver. In addition, the error is very slightly increasing as a
function of c (Figure 4) as expected from the truncation of the Binomial series.

Finally the robustness of our method to more realistic effects such as perspective viewing
geometry and near point source as well as Gaussian noise is shown in Figure 5.

5.2 Real Data
We acquired real data with two different setups. The first setup consists of a FL3-U3-20E4C
camera of Point Grey Research placed in the center of a 5cm base containing SHARP LED
modules, MINIZENIGATA series. We used 24 LEDs arranged in 2 concentric rings of radii
3cm and 5cm respectively. This setup was used to obtain a marble Buddha statue (6(a))
and a shiny plastic head (6(b)). A second setup, consisting in a series of 8 LEDs and a
Canon EOS 7D camera, was used to acquire images of a plaster Arlequin mask (6(c)) and
of print of teeth (6(d)). For both setups, the camera intrinsics were calibrated using Matlab’s
computer vision toolbox, the position of the LEDs was calibrated using a mirror sphere, and
their intensities were calibrated using a diffuse sphere. The anisotropy parameter was set to
µ = 1, consistently with the manufacturer’s specification.
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(a) [34] (b) [15] (c) [19] (d) Ours (e) Ground truth

Figure 2: Comparison of several PS methods on the dataset of Figure 1. Note that 2(b) and
2(c) have a substantial flattening due to the ambient light.

(a) [34], Mean error:11◦ (b) [15], Mean error:16.7◦ (c) [19], Mean error:17.2◦ (d) Ours, Mean error:8.5◦

Figure 3: Quantitative evaluation of several PS methods on the dataset of Figure 1. Most
errors are observed around the occlusion boundaries as expected.

The algorithm was implemented in Matlab and was tested on a i7 processor at 2.4GHz,
with 16GB RAM. As selecting all possible quadruples of images is computationally in-
tractable (

(24
4

)
= 10626)), for the first dataset we only considered differences of diamet-

rically opposite images. This maximizes photometric parallax and reduces the number of
quadruples to 32 (8 pairs from outer ring getting divided with 4 pairs from the inner ring).
The CPU time on our datasets was a few minutes. To create challenging conditions, the
relevant amount of ambient light was varied between the different datasets, with the Buddha
being illuminated more than the Mask and the Teeth. Finally, the shiny head was placed next
to an open window (the reflection of the window is clearly visible and it is creating some
artifacts in the reconstructions at the second row of Figure 7) which makes the ambient light
uncontrolled.
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Figure 4: Comparison of several PS methods under different ambient light and shininess
parameter. At high ambient levels, a considerable portion of the pixels get saturated, and this
effect dominates the error.

(a) Sample image (b) Reconstruction (c) Normal map (d) Normal Error map

Figure 5: Synthetic data with realistic assumptions including perspective deformation, near
light sources, and moderate specularity (c=0.4); as well as 2% additive Gaussian noise.

(a) Buddha (b) Shiny head (c) Mask (d) Teeth

Figure 6: Two samples from each object and the respective ambient light in the last row.
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(a) [34] (b) [15] (c) [19] (d) Ours

Figure 7: Evaluation of PS methods on the datasets of Figure 5.2

6 Conclusion and Further Work
In this work we tackled the problem of PS under ambient light as well as an extensive set
of additional realistic assumption (perspective view geometry, non-linear light propagation,
specular reflection). A new approach based on ratios of image differences was presented that
is able to remove any additive bias on images. The problem is then expressed as a quasi-
linear PDE and is solved through a robust variational optimizer performing L1 minimization.
Experiments on synthetic and real data verify that our approach achieves good reconstruc-
tions under significant ambient light, specular highlights and perspective deformation.

As a challenging future work, we foresee the applicability of our technique involving Bi-
nomial expansion, from the BRDF presented in [19] to other more physical and complicated
BRDFs.

Finally, as most of the calculations are performed on a per-pixel basis, the implementa-
tion can easily be ported to a GPU allowing for a real time acquisition. This is coherently
matching with the proposed ambient light removal approach towards making the PS a reli-
able technique capable of real time shape reconstruction in open environment.
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