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1 Implementation details
Training data preparation. We divided the UCF-101 train split one into two subsets. The
first subset consists of 70% (1605 videos ∼ 240k frames) and the second subset contains
30% (688 videos) of the training videos from UCF-101 train split one. We selected the
videos uniformly at random for each action class and trained the RPN and Fast R-CNN
networks using the first subset, while the second subset was used as a validation set for CNN
training. For J-HMDB-21 and LIRIS HARL D2 datasets, we used the original training sets
provided by the authors [3, 7].

Optical flow based video frame generation. We computed dense optical flow between
each pair of consecutive video frames using the state-of-the-art algorithm in [1]. The 3-
channel optical flow values (i.e., flow-x, flow-y and the flow magnitude) were then used to
construct ‘motion frames’ [2]. These motion (flow) frames were used to train the motion-
based RPN and Fast R-CNN networks.

Modifications in the existing codebase. We downloaded the publicly available Faster R-
CNN MATLAB code from https://github.com/ShaoqingRen/faster_rcnn
to train the RPN and Fast R-CNN networks. We practically experienced a shortage of RAM
memory while training UCF-101 using this code. The original MATLAB code tries to load
the entire training data into RAM. For datasets such as UCF-101 the amount of training
data is substantial, causing out-of-memory issues. For example, in UCF-101, we have 240k
training video frames, a horizontal flipping process for each video frame gives us in total
480k training frames. Loading RPN training data for 480k frames takes more than 64GB of
RAM in our experiments. The situation becomes worse in Fast R-CNN training, when the
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code tries to load training data for 480k× 2000 region proposals which exhausts the entire
128GB of RAM completely. In the default setting, a RPN net takes as input 1 video frame
per training iteration and a Fast R-CNN takes as input 2 frames per iteration. Thus, loading
the entire training data into RAM can be easily avoided by caching the frame-level training
data into disk storage and fetching them as and when required by the CNN training module.
We modified the existing MATLAB code to require a smaller amount of RAM memory for
both RPN and Fast R-CNN training.

CNN weight initialisation. The RPN and Fast R-CNN networks [4] were initialised with
weights from a pre-trained ImageNet model [5].

CNN solver configuration setting. For UCF-101, we trained both RPN and Fast R-CNN
for 320k iterations. For the first 240k iterations we used a learning rate 0.001, while for
the remaining 80k iterations a learning rate of 0.0001 was set. For both the J-HMDB-21
and the LIRIS-HARL datasets, we trained both RPN and Fast R-CNN networks for 180k
iterations. For the first 120k iterations a learning rate of 0.001 was used - for the remaining
60k iterations, we set the learning rate to 0.0001. The momentum was set to a constant value
of 0.9, while weight decay was fixed to 0.0005.

Stochastic Gradient Descent mini-batch size. We selected an SGD mini-batch size of
256 for RPN, and 128 for Fast R-CNN training.

CNN training. First we trained an RPN network with either a set of RGB or optical flow
based training video frames. At each training iteration, the RPN takes as input a video frame
and its associated ground-truth bounding boxes. Once the RPN net was trained, we used the
trained model to extract frame-level region proposals. A trained RPN net outputs a set of
region proposals (around 16k to 17k) per frame and their associated actionness scores. We
then filtered these region proposals using non-maximal suppression (NMS) and selected top
2k proposals based on their actionness scores. These top 2k region proposals along with the
frame and its ground-truth boxes were then passed to a Fast R-CNN for training.

CNN testing. Once training both RPN and Fast R-CNN networks, we extracted region
proposals from test video frames using the learnt RPN model. Similarly to what done in the
training stage, we filtered the region proposals using NMS - however, at test time, we chose
the top 300 region proposals and passed them to the Fast R-CNN network to obtain the final
detection boxes: a set of 300×C regressed boxes and their associated softmax probability
scores (where C is the number of ground-truth action categories in a given dataset). For each
action category, we first filtered the detection boxes using NMS and then selected the top 5
boxes per frame based on their softmax probability scores. We used an NMS threshold of
0.7 to filter the RPN-generated region proposals, and a threshold of 0.3 when filtering the
Fast R-CNN detection boxes.

Selective Search region proposals. In Section 3.1 and 3.4, we presented a comparative
analysis of region proposal quality and train and test time detection speed comparison with
the state-of-the-art. In these experiments, we used the Selective Search algorithm to extract
region proposals on UCF-101 video frames. We extracted Selective Search (SS) region pro-
posals using the publicly available code from https://github.com/rbgirshick/
rcnn. We used the SS’s ‘fast mode’ and obtained approximately 1000 SS boxes per video
frame, subsequently, we filtered these SS boxes using the motion saliency scores of [2] and
retain on average 100 SS boxes per frame.

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x penalty @M  {}al.} 2015

Citation
Citation
{Gkioxari and Malik} 2015

https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/rcnn


SAHA et al.: DEEP LEARNING FOR DETECTING SPACE-TIME ACTION TUBES 3

2 Evaluation metrics
To compare our results on UCF-101 and J-HMDB-21 with the state of the art, we used
the same evaluation metric proposed by [6]. For LIRIS HARL, we used the evaluation
tool provided by the LIRIS HARL competition [7]. Note that the Area Under the Curve
(AUC) on J-HMDB-21 reported by [2] is sensitive to negative detections, as AUC increases
when adding many easy negatives1 [6], whereas mAP is not affected by easy negatives.
The LIRIS HARL evaluation metric [7] requires hyper-parameter optimisation, which is a
kind of overhead to the whole evaluation process. In contrast, mAP does not require any
hyper-parameter optimisation, and thus, most suitable for measuring performance of spatio-
temporal action detection accuracy. The reported metric on UCF-101 and J-HMDB-21 is the
mean Average Precision (mAP) at a threshold δ = .2 for spatio-temporal localisation (UCF-
101) and δ = .5 for spatial localisation (J-HMDB-21). We report an mAP and Integrated
F1-Score [7] for the LIRIS-HARL dataset at a threshold of δ = .1.

3 Experimental results

3.1 Comparative analysis of region proposal quality
Firstly we analysed the quality of Selective Search vs RPN-based region proposals using the
Recall-to-IoU measure [4]. We extracted Selective Search (SS) boxes (approximately 1000
boxes/frame) and RPN-based detection boxes (300 boxes/frame) from our detection network
on UCF-101 testsplit-1. Also, we applied a constraint on the RPN-based proposals by putting
a threshold to their class-specific softmax probability scores sc and only considering those
proposals with sc ≥ 0.2. For each UCF-101 action category, we computed the recall of these
proposals at different threshold values. Even with a relatively smaller number of proposals
and the additional constraint on the classification probability score, RPN-based proposals
exhibit much better recall values than SS-based boxes as depicted in Fig. 1.

3.2 Ablation study
We are the first to report an ablation study of the spatio-temporal action localisation perfor-
mance on UCF-101 dataset. Table 1 shows the class-specific video AP (average precision
in %) for each action category of UCF-101 generated by the appearance- and motion-based
detection networks separately, and by the appearance+motion fusion model. Results are
generated at a spatio-temporal overlap threshold of δ = 0.2. For 18 out of 24 action classes,
our appearance+motion fusion technique gives the best APs. The appearance-based detec-
tion net alone achieves the best APs for two classes: HorseRiding(HR) and TennisSwing(TS),
while the motion-based detection net outperforms for action classes: CricketBowling(CB),
LongJump(LJ), SalsaSpin(SaS) and SoccerJuggling (SJ). It is worth noting that for action
classes HR and TS, static appearance cues such as “horse” and “tennis player” are the most
discriminative features whereas, for action classes CB, LJ, SaS and SJ, the motion’s tem-
poral dynamics seems to be most discriminative. This could explain the highest APs of
appearance- and motion-based networks for these specific actions.

1Negatives which have lower detection confidence than all positives.
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Figure 1: Performance comparison between Selective Search (SS) and RPN-based region
proposals on four groups of action classes (vertical columns) in UCF-101. Top row: recall
vs. IoU curve for SS. Bottom row: results for RPN-based region proposals.

Table 1: An ablation study of the spatio-temporal detection results (video APs in %) on
UCF-101.

Actions Basketball BasketballDunk Biking CliffDiving CricketBowling Diving Fencing FloorGymnastics

appearance 30.5 22.7 56.1 44.2 11.5 89.7 86.9 93.8
motion 22.9 41.5 52.0 64.6 30.2 86.7 83.4 80.0
appearance+motion 36.7 48.3 60.4 73.2 19.9 96.6 88.0 99.7

Actions GolfSwing HorseRiding IceDancing LongJump PoleVault RopeClimbing SalsaSpin SkateBoarding

appearance 59.9 95.4 59.2 41.5 48.9 77.8 52.4 76.5
motion 47.0 91.5 62.0 68.3 51.9 88.2 83.0 67.0
appearance+motion 66.5 94.1 62.5 55.7 72.6 89.6 57.5 85.0

Actions Skiing Skijet SoccerJuggling Surfing TennisSwing TrampolineJumping VolleyballSpiking WalkingWithDog

appearance 68.4 88.0 34.6 55.7 34.3 50.3 13.2 73.3
motion 51.8 61.6 87.6 42.7 08.6 31.1 07.3 63.8
appearance+motion 78.9 92.8 86.4 61.3 32.6 51.3 15.9 75.6

3.3 Impact of label smoothing on detection performance

We conducted experiments to show the significance of the path label smoothing step. More
specifically, we show that the class-specific αc values help to smooth the action paths for each
action category independently resulting an overall performance boost in the spatio-temporal
detection accuracy. First, we generated detection results on UCF-101 test set (split-1) by
setting the constant parameter αc = 0 for each action category. Then, we use the cross val-
idated class-specific αc values and again generated detection results. In our experiment, we
set the spatio-temporal IoU threshold δ = 0.2. Table 2 presents the results for both the cases:
detection result obtained by setting αc = 0 for each action and result generated using the
cross validated class-specific αc values. Table 3 shows the class-specific αc values obtained
by cross validation. Notice that the class-specific αc improves the detection accuracy (mAP)
by 6%. We empirically observed that the class-specific softmax probability scores (from
detection network) are not always stable throughout an action path generated by the 1st pass
of DP algorithm, i.e., there are sudden jumps in the scores causing a valid action path to be
broken by the 2nd pass DP algorithm. The class-specific αc value helps to stabilise an action
path by introducing a certain penalty in the 2nd pass of DP. Due to the fact that each action
category has its own temporal duration and speed, different alpha values for different action
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classes is better than having a single alpha value assigned for all classes.

Table 2: Spatio-temporal detection results (mAP) on UCF-101 using two different sets of αc
values.

mAP

αc = 0 60.77
class-specific αc 66.75

Table 3: Class specific αc values for each action category in UCF-101 obtained from cross
validation.

Actions Basketball BasketballDunk Biking CliffDiving CricketBowling Diving Fencing FloorGymnastics
class-specific αc 0 0.8 0 14 0 0.2 0 0.6

Actions GolfSwing HorseRiding IceDancing LongJump PoleVault RopeClimbing SalsaSpin SkateBoarding
class-specific αc 0.2 4 18 0 1 0.8 6 8

Actions Skiing Skijet SoccerJuggling Surfing TennisSwing TrampolineJumping VolleyballSpiking WalkingWithDog
class-specific αc 2 10 0.2 0 0.2 0 2 0.2

3.4 Training and test-time detection speed comparison
We also performed an analysis of training and testing time requirements of our method in
comparison with our main competitors [2, 6]. Note that [6] modifies the pipeline of Action-
Tube [2] by adding a ‘tracking by detection’ module - thus in Table 4 and 5, while comparing
the computation time, we only consider those components of the detection pipelines which
are common to both [2] and [6].

Comparison on UCF-101 dataset. The comparison is run on the UCF-101 dataset, using
7 NVIDIA Titan X GPUs. Time is computed assuming that appearance- and motion-based
CNNs are trained in parallel. Our method is at least 2× faster in training and 20× faster in
testing on UCF101 (refer Table 4). The most time consuming step in [2, 6] is CNN feature
extraction, as CNN features are extracted for each region proposal and for each video frame,
and each feature extraction process requires to run a CNN forward pass. For example, using
ActionTube [2]’s approach, for UCF-101’s 240k training video frames with approximately
100 Selective Search based region proposals per frame, we need 240k× 100 CNN forward
passes to extract features there. In contrast an RPN net needs only 240k CNN forward passes,
as it uses a single shared convolutional feature map for proposal generation and requires only
one CNN forward pass per video frame.
Even in our pipeline RPN region proposal extraction is time consuming. A RPN model takes
100ms to process each frame - multiplied by 240k UCF-101 training video frames, the entire
process takes 7 hours. We significantly reduce this time to ∼ 26 minutes by employing
7 NVIDIA Titan X GPUs in parallel to extract region proposals. Time computation for
the competing methods is reported considering 40k training iterations for CNN fine-tuning;
for RPN and Fast R-CNN training 320k CNN training iterations are used. Testing time
performances for the proposed method are once again reported while using 7 Titan X GPUs
in parallel.

Test-time detection speed comparison on J-HMDB-21. We compare the video-level de-
tection time of our proposed pipeline with the state-of-the-art [2, 6] which use an expensive
multi-stage classification strategy. We report comparison results on J-HMDB-21 dataset.
We exclude our 2nd pass DP step due to the fact that J-HMDB-21 video clips do not re-
quire temporal trimming. Our 1st pass DP and optical flow based ‘motion frame’ generation
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Table 4: Training and test time detection speed comparison on UCF-101 with [2, 6].
Training time: time computed on 2293 UCF-101 training video clips (split-1)

ActionTube [2] and STMH [6] Ours

Fine-tuning CNNs 12 hours RPN training 1 day
CNN feature extraction 5 days Region proposal extraction 26 minutes
One vs rest SVMs training 1 day Fast R-CNN training 2 days
Total training time required 6+ days Total training time required 3+ days

Test time: time computed on 914 UCF-101 test video clips (split-1)

CNN feature extraction 2 days Region proposal extraction 20 minutes
Fast R-CNN detections 38 minutes
1st pass DP 76 minutes
2nd pass DP 7 minutes

Total test time required 2+ days Total test time required 2.5 hours

steps are common to [2] and our pipeline, and thus, we exclude these steps as well in our
comparison. We compare the computation times required for the region proposal generation
and CNN feature extraction steps of [2, 6] with our RPN and detection nets computation
times. Table 5 shows the time required for each step. The reported computation time is aver-
aged over all the videos in the J-HMDB-21 test split1. The time is in second per video clip.
All the Experimental results were generated using a desktop computer with an Intel Xeon
CPU@3.20GHz and NVIDIA Titan X GPU. Our method is at least 10× faster than [2] and
5× than [6] in detecting actions in a video.

Table 5: Test time detection speed comparison on J-HMDB-21 with [2, 6].
ActionTube [2], STMH [6] Average time (Sec./video) Ours Average time(Sec./video)

Selective Search [2] / EdgeBoxes [6] 68.10 / 6.81 RPN proposal generation 4.08
CNN feature extraction 45.42 Detection network 6.81

Avg. detection time 113.52 [2] / 52.23 [6] Avg. detection time 10.89

3.5 Additional spatial and temporal localisation results
Figure 2 provides additional evidence on the temporal detection and spatial localisation per-
formance of our method. The additional results can be seen in the video submitted alongside
this document.
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Figure 2: Sample spatio-temporal localisation results on UCF-101. Each row represents a
UCF-101 test video clip. Ground-truth bounding boxes are in green, detection boxes in red.
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