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Abstract

In this work, we propose an approach to the spatiotemporal localisation (detection)
and classification of multiple concurrent actions within temporally untrimmed videos.
Our framework is composed of three stages. In stage 1, appearance and motion detec-
tion networks are employed to localise and score actions from colour images and optical
flow. In stage 2, the appearance network detections are boosted by combining them with
the motion detection scores, in proportion to their respective spatial overlap. In stage 3,
sequences of detection boxes most likely to be associated with a single action instance,
called action tubes, are constructed by solving two energy maximisation problems via
dynamic programming. While in the first pass, action paths spanning the whole video
are built by linking detection boxes over time using their class-specific scores and their
spatial overlap, in the second pass, temporal trimming is performed by ensuring label
consistency for all constituting detection boxes. We demonstrate the performance of our
algorithm on the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achiev-
ing new state-of-the-art results across the board and significantly increasing detection
speed at test time.

1 Introduction
Recent advances in object detection via convolutional neural networks (CNNs) [7] have trig-
gered a significant performance improvement in the state-of-the-art action detectors [8, 34].
However, the accuracy of these approaches is limited by their relying on unsupervised re-
gion proposal algorithms such as Selective Search [8] or EdgeBoxes [34] which, besides be-
ing resource-demanding, cannot be trained for a specific detection task and are disconnected
from the overall classification objective. Moreover, these approaches are computationally ex-
pensive as they follow a multi-stage classification strategy which requires CNN fine-tuning
and intensive feature extraction (at both training and test time), the caching of these features
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Figure 1: At test time, (a) RGB and optical-flow images are passed to (b) two separate region pro-
posal networks (RPNs). (c) Each network outputs region proposals with associated actionness scores
(§ 3.1). (d) Each appearance/motion detection network takes as input the relevant image and RPN-
generated region proposals, and (e) outputs detection boxes and softmax probability scores (§ 3.2).
(f) Appearance and motion based detections are fused (§ 3.3) and (g) linked up to generate class-
specific action paths spanning the whole video. (h) Finally the action paths are temporally trimmed to
form action tubes (§ 3.4).

onto disk, and finally the training of a battery of one-vs-all SVMs for action classification.
On large datasets such as UCF-101 [25], overall training and feature extraction takes a week
using 7 Nvidia Titan X GPUs, plus one extra day for SVM training. At test time, detection
is slow as features need to be extracted for each region proposal via a CNN forward pass.

To overcome these issues we propose a novel action detection framework which, instead
of adopting an expensive multi-stage pipeline, takes advantage of the most recent single-
stage deep learning architectures for object detection [21], in which a single CNN is trained
for both detecting and classifying frame-level region proposals in an end-to-end fashion.
Detected frame-level proposals are subsequently linked in time to form space-time ‘action
tubes’[8] by solving two optimisation problems via dynamic programming. We demonstrate
that the proposed action detection pipeline is at least 2× faster in training and 5× faster
in test time detection speeds as compared to [8, 34]. In the supplementary material, we
present a comparative analysis of the training and testing time requirements of our approach
with respect to [8, 34] on the UCF-101 [25] and J-HMDB-21 [12] datasets. Moreover, our
pipeline consistently outperforms previous state-of-the-art results (§ 4).

Overview of the approach. Our approach is summarised in Fig. 1. We train two pairs
of Region Proposal Networks (RPN) [21] and Fast R-CNN [6] detection networks - one on
RGB and another on optical-flow images [8]. For each pipeline, the RPN (b), takes as input a
video frame (a), and generates a set of region proposals (c), and their associated ‘actionness’
[2] scores1. Next, a Fast R-CNN [21] detection network (d) takes as input the original video
frame and a subset of the region proposals generated by the RPN, and outputs a ‘regressed’
detection box and a softmax classification score for each input proposal, indicating the prob-
ability of an action class being present within the box. To merge appearance and motion
cues, we fuse (f) the softmax scores from the appearance- and motion-based detection boxes
(e) (§ 3.3). We found that this strategy significantly boosts detection accuracy.

After fusing the set of detections over the entire video, we identify sequences of frame
regions most likely to be associated with a single action tube. Detection boxes in a tube need
to display a high score for the considered action class, as well as a significant spatial overlap
for consecutive detections. Class-specific action paths (g) spanning the whole video duration
are generated via a Viterbi forward-backward pass (as in [8]). An additional second pass of

1A softmax score for a region proposal containing an action or not.
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Figure 2: Action tube detection in a ‘biking’ video taken from UCF-101 [25]. (a) Side view of
the detected action tubes where each colour represents a particular instance. The detection boxes in
each frame are linked up to form space-time action tubes. (b) Illustration of the ground-truth temporal
duration for comparison. (c) Viewing the video as a 3D volume with selected image frames; notice that
we are able to detect multiple action instances in both space and time. (d) Top-down view.

dynamic programming is introduced to take care of temporal detection (h). As a result,
our action tubes are not constrained to span the entire video duration, as in [8]. Furthermore,
extracting multiple paths allows our algorithm to account for multiple co-occurring instances
of the same action class (see Fig. 2).

Although it makes use of existing RPN [21] and Fast R-CNN [6] architectures, this work
proposes a radically new approach to spatiotemporal action detection which brings them to-
gether with a novel late fusion approach and an original action tube generation mechanism
to dramatically improve accuracy and detection speed. Unlike [8, 34], in which appearance
and motion information are fused by combining fc7 features, we follow a late fusion ap-
proach [23]. Our novel fusion strategy boosts the confidence scores of the detection boxes
based on their spatial overlaps and their class-specific softmax scores obtained from ap-
pearance and motion based networks (§ 3.3). The 2nd pass of dynamic programming, we
introduce for action tube temporal trimming, contributes to a great extent to significantly
improve the detection performance (§ 4).

Contributions. In summary, this work’s main contribution is a novel action detection
pipeline which:

• incorporates recent deep Convolutional Neural Network architectures for simultaneously
predicting frame-level detection boxes and the associated action class scores (§ 3.1-3.2);

• uses an original fusion strategy for merging appearance and motion cues based on the
softmax probability scores and spatial overlaps of the detection bounding boxes (§ 3.3);

• brings forward a two-pass dynamic programming (DP) approach for constructing space
time action tubes (§ 3.4).

An extensive evaluation on the main action detection datasets demonstrates that our approach
significantly outperforms the current state-of-the-art, and is 5 to 10 times faster than the
main competitors at detecting actions at test time (§ 4). Thanks to our two-pass action tube
generation algorithm, in contrast to most existing action classification [13, 15, 23, 30, 31] and
localisation [8, 34] approaches, our method is capable of detecting and localising multiple
co-occurring action instances in temporally untrimmed videos (see Fig. 2).
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2 Related work
Recently, inspired by the record-breaking performance of CNNs in image classification [17]
and object detection from images [7], deep learning architectures have been increasingly
applied to action classification [13, 15, 23], spatial [8] or spatio-temporal [34] action locali-
sation, and event detection [37].

The action localisation problem, in particular, can be addressed by leveraging video seg-
mentation methods. An example is the unsupervised greedy agglomerative clustering ap-
proach of [11], which resembles Selective Search space-time video blocks. Since [11] does
not exploit the representative power of CNN features, they fail to achieve state-of-the-art
results. Soomro et al. [26] learn the contextual relations between different space-time video
segments. Such ‘supervoxels’, however, may end up spanning very long time intervals, fail-
ing to localise each action instance individually. Similarly, [29] uses unsupervised clustering
to generate a small set of bounding box-like spatio-temporal action proposals. However,
since the approach in [29] employs dense-trajectory features [30], it does not work on ac-
tions characterised by small motions [29].

The temporal detection of actions [9, 14] and gestures [3] in temporally untrimmed
videos has also recently attracted much interest [4, 38]. Sliding window approaches have
been extensively used [5, 19, 27, 32]. Unlike our approach, these methods [27, 32, 38] only
address temporal detection, and suffer from the inefficient nature of temporal sliding win-
dows. Our framework is based on incrementally linking frame-level region proposals and
temporal smoothing (in a similar fashion to [4]), an approach which is computationally more
efficient and can handle long untrimmed videos.

Indeed methods which connect frame-level region proposals for joint spatial and tem-
poral localisation have risen to the forefront of current research. Gkioxari and Malik [8]
have extended [7] and [23] to tackle action detection using unsupervised Selective-Search
region proposals and separately trained SVMs. However, as the videos used to evaluate their
work only contain one action and were already temporally trimmed (J-HMDB-21 [12]), it
is not possible to assess their temporal localisation performance. Weinzaepfel et al.’s ap-
proach [34], instead, first generates region proposals using EdgeBoxes [40] at frame level
to later use a tracking-by-detection approach based on a novel track-level descriptor called
a Spatio-Temporal Motion Histogram. Moreover, [34] achieves temporal trimming using a
multi-scale sliding window over each track, making it inefficient for longer video sequences.
Our approach improves on both [8, 34] by using an efficient two-stage single network for
detection of region proposals and two passes of dynamic programming for tube construction.

Some of the reviewed approaches [29, 34] could potentially be able to detect co-occurring
actions. However, [34] limit their method to produce maximum of two detections per class,
while [29] does so on the MSRII dataset [1] which only contains three action classes of repet-
itive nature (clapping, boxing and waving). Klaser at al. [16] use a space-time descriptor and
a sliding window classifier to detect the location of only two actions (phoning and standing
up). In contrast, in our LIRIS-HARL tests (§ 4) we consider 10 diverse action categories.

3 Methodology
As outlined in Figure 1, our approach combines a region-proposal network (§ 3.1-Fig. 1b)
with a detection network (§ 3.2-Fig. 1d), and fuses the outputs (§ 3.3-Fig. 1f) to generate
action tubes (§ 3.4-Fig. 1g-h). All components are described in detail below.
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3.1 Region Proposal Network
To generate rectangular action region hypotheses in a video frame we adopt the Region Pro-
posal Network (RPN) approach of [21], which is built on top of the last convolutional layer
of the VGG-16 architecture by Simonyan and Zisserman [24]. To generate region propos-
als, this mini-network slides over the convolutional feature map outputted by the last layer,
processing at each location an n× n spatial window and mapping it to a lower dimensional
feature vector (512-d for VGG-16). The feature vector is then passed to two fully connected
layers: a box-regression layer and a box-classification layer.

During training, for each image location, k region proposals (also called ‘anchors’) [21]
are generated. We consider those anchors with a high Intersection-over-Union (IoU) with
the ground-truth boxes (IoU > 0.7) as positive examples, whilst those with IoU < 0.3 as
negatives. Based on these training examples, the network’s objective function is minimised
using stochastic gradient descent (SGD), encouraging the prediction of both the probability
of an anchor belonging to action or no-action category (a binary classification), and the
4 coordinates of the bounding box.

3.2 Detection network
For the detection network we use a Fast R-CNN net [6] with a VGG-16 architecture [24].
This takes the RPN-based region proposals (§ 3.1) and regresses a new set of bounding
boxes for each action class and associates classification scores. Each RPN-generated region
proposal leads to C (number of classes) regressed bounding boxes with corresponding class
scores.

Analogously to the RPN component, the detection network is also built upon the con-
volutional feature map outputted by the last layer of the VGG-16 network. It generates a
feature vector for each proposal generated by RPN, which is again fed to two sibling fully-
connected layers: a box-regression layer and a box-classification layer. Unlike what happens
in RPNs, these layers produce C multi-class softmax scores and refined boxes (one for each
action category) for each input region proposal.

CNN training strategy. We employ a variation on the training strategy of [21] to train
both the RPN and Fast R-CNN networks. Shaoqing et al. [21] suggested a 4-steps ‘alter-
nating training’ algorithm in which in the first 2 steps, a RPN and a Fast R-CNN nets are
trained independently, while in the 3rd and 4th steps the two networks are fine-tuned with
shared convolutional layers. In practice, we found empirically that the detection accuracy on
UCF101 slightly decreases when using shared convolutional features, i.e., when fine tuning
the RPN and Fast-RCNN trained models obtained after the first two steps. As a result, we
train the RPN and the Fast R-CNN networks independently following only the 1st and 2nd

steps of [21], while neglecting the 3rd and 4th steps suggested by [21].

3.3 Fusion of appearance and motion cues
In a work by Redmon et al. [20], the authors combine the outputs from Fast R-CNN and
YOLO (You Only Look Once) object detection networks to reduce background detections
and improve the overall detection quality. Inspired by their work, we use our motion-based
detection network to improve the scores of the appearance-based detection net (c.f. Fig. 1f).

Let {bs
i} and {b f

j } denote the sets of detection boxes generated by the appearance- and
motion-based detection networks, respectively, on a given test frame and for a specific action
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class c. Let b f
max be the motion-based detection box with maximum overlap with a given

appearance-based detection box bs
i . If this maximum overlap, quantified using the IoU, is

above a given threshold τ , we augment the softmax score sc(bs
i ) of the appearance-based box

as follows:
s∗c(b

s
i ) = sc(bs

i )+ sc(b f
max)× IoU(bs

i ,b
f
max). (1)

The second term adds to the existing score of the appearance-based detection box a propor-
tion, equal to the amount of overlap, of the motion-based detection score. In our tests we set
τ = 0.3.

3.4 Action tube generation

The output of our fusion stage (§ 3.3) is, for each video frame, a collection of detection boxes
for each action category, together with their associated augmented classification scores (1).
Detection boxes can then be linked up in time to identify video regions most likely to be as-
sociated with a single action instance, or action tube. Action tubes are connected sequences
of detection boxes in time, without interruptions, and unlike those in [8] they are not con-
strained to span the entire video duration.

They are obtained as solutions to two consecutive energy maximisation problems. First
a number of action-specific paths pc = {b1, . . . ,bT}, spanning the entire video length, are
constructed by linking detection boxes over time in virtue of their class-specific scores and
their temporal overlap. Second, action paths are temporally trimmed by ensuring that the
constituting boxes’ detection scores are consistent with the foreground label c.

Building action paths. We define the energy E(pc) for a particular path pc linking up
detection boxes for class c across time to be the a sum of unary and pairwise potentials:

E(pc) =
T

∑
t=1

s∗c(bt)+λo

T

∑
t=2

ψo (bt ,bt−1) , (2)

where s∗c(bt) denotes the augmented score (1) of detection bt , the overlap potential ψo(bt,bt−1)
is the IoU of the two boxes bt and bt−1, and λo is a scalar parameter weighting the relative
importance of the pairwise term. The value of the energy (2) is high for paths whose de-
tection boxes score highly for the particular action category c, and for which consecutive
detection boxes overlap significantly. We can find the path which maximises the energy,
p∗c = argmaxpc

E(pc), by simply applying the Viterbi algorithm [8].
Once an optimal path has been found, we remove all the detection boxes associated

with it and recursively seek the next best action path. Extracting multiple paths allows our
algorithm to account for multiple co-occurring instances of the same action class.

Smooth path labelling and temporal trimming. As the resulting action-specific paths
span the entire video duration, while human actions typically only occupy a fraction of it,
temporal trimming becomes necessary. The first pass of dynamic programming (2) aims at
extracting connected paths by penalising regions which do not overlap in time. As a result,
however, not all detection boxes within a path exhibit strong action-class scores.

The goal here is to assign to every box bt ∈ pc in an action path pc a binary label
lt ∈ {c,0} (where zero represents the ‘background’ or ‘no-action’ class), subject to the con-
ditions that the path’s labelling Lpc = [l1, l2, . . . , lT ]′: i) is consistent with the unary scores (1);
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and ii) is smooth (no sudden jumps).
As in the previous pass, we may solve for the best labelling by maximising:

L∗pc = argmax
Lpc

(
T

∑
t=1

slt (bt)−λl

T

∑
t=2

ψl (lt , lt−1)

)
, (3)

where λl is a scalar parameter weighting the relative importance of the pairwise term. The
pairwise potential ψl is defined to be:

ψl(lt , lt−1) =

{
0 if lt = lt−1

αc otherwise,
(4)

where αc is a class-specific constant parameter which we set by cross validation. In the sup-
plementary material, we show the impact of the class-specific αc on the detection accuracy.
Equation (4) is the standard Potts model which penalises labellings that are not smooth, thus
enforcing a piecewise constant solution. Again, we solve (3) using the Viterbi algorithm.

All contiguous subsequences of the retained action paths pc associated with category
label c constitute our action tubes. As a result, one or more distinct action tubes spanning
arbitrary temporal intervals may be found in each video for each action class c. Finally,
each action tube is assigned a global score equal to the mean of the top k augmented class
scores (1) of its constituting detection boxes.

4 Experimental validation and discussion
In order to evaluate our spatio-temporal action detection pipeline we selected what are cur-
rently considered among the most challenging action detection datasets: UCF-101 [25],
LIRIS HARL D2 [36], and J-HMDB-21 [12]. UCF-101 is the largest, most diverse and
challenging dataset to date, and contains realistic sequences with a large variation in cam-
era motion, appearance, human pose, scale, viewpoint, clutter and illumination conditions.
Although each video only contains a single action category, it may contain multiple action
instances of the same action class. To achieve a broader comparison with the state-of-the-
art, we also ran tests on the J-HMDB-21 [12] dataset. The latter is a subset of HMDB-
51 [18] with 21 action categories and 928 videos, each containing a single action instance
and trimmed to the action’s duration. The reported results were averaged over the three
splits of J-HMDB-21. Finally we conducted experiments on the more challenging LIRIS-
HARL dataset, which contains 10 action categories, including human-human interactions
and human-object interactions (e.g., ‘discussion of two or several people’, and ‘a person
types on a keyboard’2). In addition to containing multiple space-time actions, some of which
occurring concurrently, the dataset contains scenes where relevant human actions take place
amidst other irrelevant human motion.

For all datasets we used the exact same evaluation metrics and data splits as in the orig-
inal papers. In the supplementary material, we further discuss all implementation details,
and propose an interesting quantitative comparison between Selective Search- and RPN-
generated region proposals.

Performance comparison on UCF-101. Table 1 presents the results we obtained on UCF-
101, and compares them to the previous state-of-the-art [34, 39]. We achieve an mAP of

2http://liris.cnrs.fr/voir/activities-dataset



8 SAHA et al.: DEEP LEARNING FOR DETECTING SPACE-TIME ACTION TUBES

Table 1: Quantitative action detection results (mAP) on the UCF-101 dataset.
Spatio-temporal overlap threshold δ 0.05 0.1 0.2 0.3 0.4 0.5 0.6

FAP [39] 42.80 – – – – – –
STMH [34] 54.28 51.68 46.77 37.82 – – –

Our (appearance detection model) 68.74 66.13 56.91 48.28 39.10 30.67 22.77
Our (motion detection model) 67.04 64.86 57.33 47.45 38.65 28.90 19.49
Our (appearance + motion fusion) 79.12 76.57 66.75 55.46 46.35 35.86 26.79

66.75% compared to 46.77% reported by [34] (a 20% gain), at the standard threshold of
δ = 0.2. At a threshold of δ = 0.4 we still get a high score of 46.35%, (comparable
to 46.77% [34] at δ = 0.2). Note that we are the first to report results on UCF-101 up to
δ = .6, attesting to the robustness of our approach to more accurate localisation requirements.
Although our separate appearance- and motion-based detection pipelines already outperform
the state-of-the-art (Table 1), their combination (§ 3.3) delivers a significant performance
increase.

Some representative example results from UCF-101 are shown in Fig. 3. Our method can
detect several (more than 2) action instances concurrently, as shown in Fig. 2, in which three
concurrent instances and in total six action instances are detected correctly. Quantitatively,
we report class-specific video AP (average precision in %) of 88.0, 83.0 and 62.5 on the
UCF-101 action categories ‘Fencing’, ‘SalsaSpin’ and ‘IceDancing’, respectively, which
all concern multiple inherently co-occurring action instances. Class-specific video APs on
UCF-101 are reported in the supplementary material.

Performance comparison on J-HMDB-21. The results we obtained on J-HMDB-21 are
presented in Table 2. Our method again outperforms the state-of-the-art, with an mAP in-
crease of 18% and 11% at δ = .5 as compared to [8] and [34], respectively. Note that our
motion-based detection pipeline alone exhibits superior results, and when combined with
appearance-based detections leads to a further improvement of 4% at δ = .5. These results
attest to the high precision of the detections - a large portion of the detection boxes have high
IoU overlap with the ground-truth boxes, a feature due to the superior quality of RPN-based
region proposals as opposed to Selective Search’s (a direct comparison is provided in the
supplementary material). Sample detections on J-HMDB-21 are shown in Figure 4. Also,
we list our classification accuracy results on J-HMDB-21 in Table 3, where it can be seen
that our method achieves an 8% gain compared to [8].

Figure 3: Action detection/localisation results on UCF101. Ground-truth boxes are in green,
detection boxes in red. The top row shows correct detections, the bottom one contains examples of more
mixed results. In the last frame, 3 out of 4 ‘Fencing’ instances are nevertheless correctly detected.
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Figure 4: Sample space-time action localisation results on JHMDB. Left-most three frames: accu-
rate detection examples. Right-most three frames: mis-detection examples.

Table 2: Quantitative action detection results (mAP) on the J-HMDB-21 dataset.
Spatio-temporal overlap threshold δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ActionTube [8] (mAP) – – – – 53.3 – –
Wang et al. [33] (mAP) – – – – 56.4 – –
STMH [34] (mAP) – 63.1 63.5 62.2 60.7 – –

Our (appearance detection model) (mAP) 52.99 52.94 52.57 52.22 51.34 49.55 45.65
Our (motion detection model) (mAP) 69.63 69.59 69.49 69.00 67.90 65.25 54.35
Our (appearance+motion fusion) (mAP) 72.65 72.63 72.59 72.24 71.50 68.73 56.57

Table 3: Classification accuracy on the J-HMDB-21 dataset.
Method Wang et al. [30] STMH [34] ActionTube [8] Our (appearance+motion fusion)

Accuracy (%) 56.6 61 62.5 70.0

Performance comparison on LIRIS-HARL. LIRIS HARL allows us to demonstrate the
efficacy of our approach on temporally un-trimmed videos with co-occurring actions. For
this purpose we use LIRIS-HARL’s specific evaluation tool - the results are shown in Table 4.
Our results are compared with those of i) VPULABUAM-13 [22] and ii) IACAS-51 [10]
from the original LIRIS HARL detection challenge. In this case, our method outperforms the
competitors by an even larger margin. We report space-time detection results by fixing the
threshold quality level to 10% for the four thresholds [35] and measuring temporal precision
and recall along with spatial precision and recall, to produce an integrated score. We refer
the readers to [35] for more details on LIRIS HARL’s evaluation metrics.

telephone-conversation
put-take-obj-into-from-box-desk

enter-leave-room-no-unlocking handshaking discussion leave-baggage-unattended put-take-obj-into-from-box-desk

Figure 5: Frames from the space-time action detection results on LIRIS-HARL, some of which
include single actions involving more than one person like ‘handshaking’ and ‘discussion’. Left-most
three frames: accurate detection examples. Right-most three frames: mis-detection examples.

We also report in Table 5 the mAP scores obtained by the appearance, motion and the
fusion detection models, respectively (note that there is no prior state of the art to report in
this case). Again, we can observe an improvement of 7% mAP at δ = .2 due to our fusion
strategy. To demonstrate the advantage of our 2nd pass of DP (§ 3.4), we also generate results
(mAP) using only the first DP pass (§ 3.4). Without the 2nd pass performance decreases by
20%, highlighting the importance of temporal trimming in the construction of action tubes.

Table 4: Quantitative action detection results on the LIRIS-HARL dataset.
Method Recall-10 Precision-10 F1-Score-10 Isr Isp Itr It p IQ

VPULABUAM-13-IQ [22] 0.04 0.08 0.05 0.02 0.03 0.03 0.03 0.03
IACAS-51-IQ [10] 0.03 0.04 0.03 0.01 0.01 0.03 00.0 0.02

(Ours) 0.568 0.595 0.581 0.5383 0.3402 0.4802 0.4739 0.458
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Table 5: Quantitative action detection results (mAP) on LIRIS-HARL for different δ .
Spatio-temporal overlap threshold δ 0.1 0.2 0.3 0.4 0.5

Appearance detection model 46.21 41.94 31.38 25.22 20.43
Motion detection model 52.76 46.58 35.54 26.11 19.28
Appearance+motion fusion with one DP pass 38.1 29.46 23.58 14.54 9.59
Appearance+motion fusion with two DP passes 54.18 49.10 35.91 28.03 21.36

Test-time detection speed comparison. Finally, we compared detection speed at test time
of the combined region proposal generation and CNN feature extraction approach used in ([8,
34]) to our neural-net based, single stage action proposal and classification pipeline on the
J-HMDB-21 dataset.We found our method to be 10× faster than [8] and 5× faster than [34],
with a mean of 113.52 [8], 52.23 [34] and 10.89 (ours) seconds per video, averaged over
all the videos in J-HMDB-21 split1. More timing comparison details and qualitative results
(images and video clips) can be found in the supplementary material.

Discussion. The superior performance of the proposed method is due to a number of rea-
sons. 1) Instead of using unsupervised region proposal algorithms as in [28, 40], our pipeline
takes advantage of a supervised RPN-based region proposal approach which exhibits bet-
ter recall values than [28] (supplementary-material). 2) Our fusion technique improves the
mAPs (over the individual appearance or motion models) by 9.4%, 3.6% and 2.5% on the
UCF-101, J-HMDB-21 and LIRIS HARL datasets respectively. We are the first to report
an ablation study (supplementary-material) where it is shown that the proposed fusion strat-
egy (§ 3.3) improves the class-specific video APs of UCF-101 action classes. 3) Our original
2nd pass of DP is responsible for significant improvements in mAP by 20% on LIRIS HARL
and 6% on UCF-101 (supplementary-material). Additional qualitative results are provided
in the supplementary video 3, and on the project web page 4, where the code has also been
made available.

5 Conclusions and future work
In this paper, we presented a novel human action recognition approach which addresses in
a coherent framework the challenges involved in concurrent multiple human action recogni-
tion, spatial localisation and temporal detection, thanks to a novel deep learning strategy for
simultaneous detection and classification of region proposals and an improved action tube
generation approach. Our method significantly outperforms the previous state-of-the-art on
the most challenging benchmark datasets, for it is capable of handling multiple concurrent
action instances and temporally untrimmed videos.

Its combination of high accuracy and fast detection speed at test time is very promising
for real-time applications, for instance smart car navigation. As the next step we plan to make
our tube generation and labelling algorithm fully incremental and online, by only using re-
gion proposals from independent frames at test time and updating the dynamic programming
optimisation step at every incoming frame.
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