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Abstract

Learning of convolutional filters in deep neural networks proves high efficiency to
provide sparse representations for the purpose of image recognition. The computational
cost of these networks can be alleviated by focusing on separable filters to reduce the
number of learning parameters. Autoencoders are a family of powerful deep networks to
build scalable generative models for automatic feature learning. Inspired by their stacked
hierarchy, we introduce Fisher convolutional autoencoders to learn separable filters in a
distributed architecture. These novel overcomplete autoencoders employ discriminant
analysis to impose the highest possible distinction among texture classes whilst holds
the minimum separation within each individual class. A distributed network of stacked
Fisher autoencoders learns banks of separable filters in parallel and makes an ensemble
of deep convolutional features with higher separability for a better classification. This
network automatically adjusts depth of each stack with respect to the capability of its
correspondent separable filter on extracting higher order convolutional features for the
dataset under study. We conduct our experiments on several publicly available datasets
varying in number of classes and quality of samples by using a standard implementation.
Our results confirm the supremacy of our method on improving the precision of texture
understanding in comparison with the recently published benchmarks.

A Mathematics of Projection/Backprojection

We start by formulating of a classical dimension reduction problem and extend its solution
to our proposed supervised projection/backprojection paradigms.

Given a sample set X = {X1,X2, . . . ,X|X |} in Rd , we try to find a matrix B ∈ Rd×c that
maps the input vector xi onto the point yi =BT xi in a lower dimensional space Rc conditioned
on c � d by maximizing the separability between and minimizing the scattering within
classes of set X .

One of the solutions is supervised learning via linear discriminant analysis (LDA) [2].
The mapping matrix B is determined to maximize the Fisher criterion given by

JF (B) = tr
((

B SwB BT )−1(B SbB BT )) (1)
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which tr(.) is diagonal summation operator. The within/between-class scatterings {SwB,SbB}
are defined as

SwB =
c

∑
j=1

∑
xi∈C j

(xi−µ j)(xi−µ j)
T (2)

SbB =
c

∑
j=1

(µ j− µ̄)(µ j− µ̄)T (3)

where c, µ j and µ̄ are number of classes, mean over class C j and mean over all dataset,
respectively.

The matrix SwB can be regarded as the average class-specific covariance, whereas SbB can
be viewed as the mean distance between all different classes. Thus, the purpose of Equation
1 is to maximize the between-class scatter while preserving within-class dispersion.

The answer is the solution of generalized eigenvalue problem SbB B = λ SwB B. Since
the rank of SbB is c−1, the solution for c classes is eigenvectors corresponding to the largest
c−1 eigenvalues of S−1

wB SbB for c� d [1].
Assuming SwB 6= I and SbB 6= I, by cyclic permutation of trace operator and imposing

orthogonality through B BT = I (identity matrix), the Equation 1 holds

JF (B) = tr
((

B SwB BT )−1(B SbB BT ))
= tr

((
BT )−1S−1

wB B−1B SbB BT
)

= tr
(

BT (BT )−1 S−1
wB× I×SbB

)
= tr

(
S−1

wB SbB

)
(4)

To come up with our proposed projection for c> d, we again consider the Fisher criterion
in Equation 1 and redefine inter-class scattering SwA ∈ Rc×c such that it satisfies

tr(SwB) = tr(SwA) (5)

Note that in Equations 2, we sum over all classes (c) and hence, to satisfy Equation 5, we
can consider SwA as a square matrix of size c× c with all zeros except main diagonal entries

SwA( j, j) = tr
(

∑
xi∈C j

(xi−µ j)(xi−µ j)
T
)
∀ j ∈ [1,c] (6)

From Equations 5 and similarity invariance of trace operator, SwB and SwA are similar
matrices [3] which implies, there should exist a non-singular matrix ΓΓΓwww such that

SwB = ΓΓΓ
−1
www SwA ΓΓΓwww (7)

By minor matrix operations, Equation 7 can be formed as

ΓΓΓwww SwB−SwA ΓΓΓwww = 0 (8)
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which is a special case of Sylvester equation [4] and can be solved for ΓΓΓwww by either Kronecker
tensor trick or using generalized eigen decomposition because, we define SwB and SwA as
non-singular matrices. The closed form solution for Equation 8 is

vec(ΓΓΓwww) = I⊗ (−SwA)−ST
wB⊗ I (9)

which vec(.) is vectorization operator. With the same reasoning, we define SbA as a square
matrix of size c× c such that

tr
(
SbB

)
= tr

(
SbA

)
(10)

and there should exist a non-singular matrix ΓΓΓbbb such that

SbB = ΓΓΓ
−1
bbb SbA ΓΓΓbbb (11)

On the other hand, from Equations 7 and 11

S−1
wB SbB =

(
ΓΓΓ
−1
www SwA ΓΓΓwww

)−1(
ΓΓΓ
−1
bbb SbA ΓΓΓbbb

)
= ΓΓΓ

−1
www S−1

wA ΓΓΓwww ΓΓΓ
−1
bbb SbA ΓΓΓbbb (12)

Due to the similarity invariance in Equations 5 and 10, we consider the cyclic permutation
of trace operator and suppose that

ΓΓΓbbb = ΓΓΓwww (13)

and hence, Equation 11 implies SbA as

SbA = ΓΓΓbbb SbB ΓΓΓ
−1
bbb (14)

Now, we work out Equation 12 by substitution from Equation 13 as follows

S−1
wB SbB = ΓΓΓ

−1
www S−1

wA× I×SbA ΓΓΓbbb

= ΓΓΓ
−1
www
(
S−1

wA SbA
)

ΓΓΓwww (15)

that proves S−1
wB SbB and S−1

wA SbA are similar matrices such that it holds

tr
(
S−1

wB SbB
)
= tr

(
S−1

wA SbA
)

(16)

Looking back at Equation 4, we are able to define a new optimization problem for SwA
and SbA considering the same discrimination power and orthogonality of Equation 1 as

JF (A) = tr
((

A SwA AT )−1(A SbA AT )) (17)

which is aligned with the number of classes (c) instead of the dimension of the input (d).
Employing the same eigenvector solution of Equation 1 to maximize Equation 17, gives the
projection matrix A ∈ Rd×c for c > d.
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B Closed Forms of Gradients
Suppose thatH(A) is composed ofH1(A) andH2(A) as follows

H1(A) =
tr
(
A SwA AT)

tr
(
A SbA AT

) (18)

H2(A) = ‖I−A AT‖2 (19)

According to matrix calculus [5],

∂ tr
(
A SwA AT)

∂A
=
(
ST

wA +SwA
)

AT (20)

∂ tr
(
A SbA AT)
∂A

=
(
ST

bA +SbA
)

AT (21)

and hence, we have

∂H1

∂A
=

(
ST

bA +SbA
)

AT× tr
(
A SwA AT)(

tr
(
A SbA AT

))2

−
(
ST

wA +SwA
)

AT× tr
(
A SbA AT)(

tr
(
A SbA AT

))2 (22)

On the other hand,

∂H2

∂A
=

∂
(
I−A AT)

∂A
× I−A AT

‖I−A AT‖2
(23)

which gives

∂H2

∂A
=
−2 AT×

(
I−A AT)

‖I−A AT‖2
(24)

The derivatives for Q(B) can be calculated with the same reasoning as

∂Q1

∂B
=

(
SbB +ST

bB

)
B× tr

(
BT SwB B

)(
tr
(
BT SbB B

))2

−
(
SwB +ST

wB
)

B× tr
(
BT SbB B

)(
tr
(
BT SbB B

))2 (25)

∂Q2

∂B
=
−2 B×

(
I−BT B

)
‖I−BT B‖2

(26)
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