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Abstract

Person re-identification is critical in surveillance applications. Current approaches
rely on appearance-based features extracted from a single or multiple shots of the target
and candidate matches. These approaches are at a disadvantage when trying to distin-
guish between candidates dressed in similar colors or when targets change their clothing.
In this paper we propose a dynamics-based feature to overcome this limitation. The
main idea is to capture soft biometrics from gait and motion patterns by gathering dense
short trajectories (tracklets) which are Fisher vector encoded. To illustrate the merits
of the proposed features we introduce three new “appearance-impaired” datasets. Our
experiments demonstrate the benefits of incorporating dynamics-based information into
re-identification algorithms.

1 Introduction
The problem of human re-identification (re-id) is essential to visual surveillance, especially
when the cameras have little or no overlapping field of view [3, 6, 7, 13, 14, 23, 39]. This
is challenging because the targets often have significant variations in appearance, caused
by changes in illumination, viewpoint and pose. Furthermore, in some scenarios, targets
may reappear a few days later wearing different clothes. Some approaches address these
challenges by learning a mapping function such that the distances between features from
the same person are relatively small, while those from different persons are relatively large
[17, 20, 30, 38, 42]. Other approaches focus on designing robust and invariant descriptors
to better represent the subjects across views [2, 4, 24, 25, 40], or fuse different appearance
features, [11, 29, 41], to achieve state-of-the-art performance on several benchmark datasets.
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(a) (b)

Figure 1: (a) Examples of images of the same person but wearing different clothing. Each
column of images shows the same person; (b) Examples of persons wearing black suits. The
first row was collected from the iLIDSVID dataset and the second row was collected from
the PRID dataset.

Currently, most re-id methods rely on appearance-based features such as color and tex-
ture statistics, which are extracted from either a single image or a small set of images of the
target. However, these features may be misleading rather than informative when matching
images of the same person wearing different clothing (Figure 1(a)) or distinguishing people
in similar clothes (Figure 1(b)) .

In real surveillance applications, the vision system is able to track the individuals for a
while [8, 9, 19], providing useful temporal/dynamic information. Yet, very few approaches
take advantage of this capability. In this paper, we propose an approach that exploits this
information to capture soft bio-metrics such as gait and motion patterns by using Fisher
vector encoding of temporal pyramids of dense short trajectories.

In order to evaluate the benefits of the proposed features, we compiled three new chal-
lenging “appearance impaired” re-id datasets. Two of these are subsets of the iLIDSVID and
PRID2011 datasets, and are entirely comprised of videos with people wearing black clothes.
The third set, collected by us, was captured by surveillance cameras from a train station. This
set contains video sequences where the same people appear wearing different clothing and
accessories. Our experiments on the full standard re-id datasets as well as the appearance im-
paired scenarios show that combining the proposed features with existing appearance-based
features improves the re-id performance in overall, and specially on appearance impaired
sequences.

The main contributions of this paper are: (i) A novel dynamics-based and Fisher
vector encoded feature DynFV for re-id. The proposed feature captures subtle motion pat-
terns to aid re-id, in particular in appearance-impaired scenarios; (ii) Three new challenging
“appearance impaired” datasets for re-id performance evaluation; and (iii) A comprehensive
evaluation of the effect of choosing different spatio, spatio-temporal, and dynamics-based
features on the performance of (unsupervised) re-id methods.

1.1 Related Work: Re-id Approaches
Appearance-based features have been widely used in person re-identification studies [6].
Xiong et al. [38] used color histograms and LBP features and evaluated the effect of differ-
ent spatial splitting schema. Covariance matrices were used as features by [2, 25]. Zhao et
al. [39] used SIFT features to introduce a re-id method based on salience parts. Bazzani et
al. [4] proposed a global appearance model with three complementary visual features. On
the other hand, the use of temporal information in the re-id literature is very limited. Gheis-
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sari et al. [12] incorporated temporal information to extract salient edge features. Bak et al.
[3] used tracking trajectories to compensate for viewpoint variance. Bedagkar-Gala et al.
[5] investigated two different gait features and demonstrated the effectiveness of fusion gait
feature with color features in long term re-id. Kawai et al. [15] applied spatio-temporal HOG
(STHOG) features to represent motion information. Although it did not require background
subtraction, STHOG features are not viewpoint invariant. Wang et al. [36] split the video
sequences into several candidate fragments based on motion energy, in which the most dis-
criminating fragments were selected and ranked simultaneously by a multi-ranking method.
Liu et al. [22] achieved state-of-the-art performance with an improved temporal cycle, se-
mantic spatial segmentation and a modified LDFV feature [24]. However, none of these
methods explicitly captured the underlying dynamics contained in the temporal sequences.

Dense trajectories capturing temporal information and moving patterns [35] have been
proved to be powerful features for activity recognition [31, 37]. More recently, Li et al.
[18], while addressing the problem of cross-view activity recognition, proposed to encode
dense trajectories using Hankelet descriptors. There, they showed that Hankelets carry useful
viewpoint and initial condition invariant properties.

Re-identification performance can also be improved by using better ways to compare or
classify the features being used. For example, [42] proposed a relative distance compari-
son model to maximize the likelihood of distances between true matches being smaller than
distances between wrong matches. In [38], Xiong et al. reported a comprehensive evalua-
tion on several metric learning algorithms and presented extensions to PCCA [27] using a
regularized term, and to LFDA [30] using a kernel trick. More recently, [21] applied cross-
view quadratic discriminant analysis (XQDA) to learn the metric on a more discriminative
subspace.

1.2 Related Work: Fisher Vector Encoding

In [18], Hankelet descriptors were encoded with Bags-Of-Words (BOW), which has been
shown to be a sub-optimal encoding method [37]. On the other hand, Fisher vector encoding
methods combining discriminating descriptors with generative models [32] have achieved
excellent recognition performance. For example, [37] showed that Fisher vectors are one of
the best encoding methods for activity recognition while [31] showed that a two-layer Fisher
vector incorporating mid-level Fisher vectors representing semantic information achieved
even better performance. As shown in our experiments, using this method allows us to
aggregate multiple dynamic (and spatial) features in an effective way. Next, for the sake of
completeness, we briefly summarize the main concepts of Fisher vector encoding.

Let X = {x1,x2, ...,xN} be a set of feature vectors that can be modeled by a distribution
p(X |θ) with parameters θ . Then, this set can be represented by the gradient vector of the
log-likelihood w.r.t. the parameters θ . Following the assumptions in [32], p(X |θ) is modeled
using a Gaussian mixture model (GMM) with θ = {π1,µ1,Σ1, ...,πK ,µK ,ΣK}, where K is the
number of mixture models and πk, µk, and Σk are the mixture weight, mean and covariance
of Gaussian k. Assuming all covariances are diagonal matrices Σk = σkI, X can be encoded
by equations (1):

FX
µ,k = 1

N
√πk

∑N
n=1 γn(k)
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Figure 2: Pipeline of the proposed dynamics-based feature extraction. (a) Dense trajectories
are extracted from video sequences and divided into small grids. (b) Temporal pyramids of
the original trajectories are built using sliding windows of different sizes. (c) A GMM model
is learned for each level of the pyramid. (d) The trajectories at each level of the pyramid are
encoded using Fisher vectors based on the corresponding GMM. (e) The Fisher vectors at all
scales are pooled to obtain the final feature vector.

where γn(k) is the posterior probability of xn given Gaussian model k. Then, the Fisher vector
of set X will be the concatenation of FX

µ,k∈{1,2,...K} and FX
σ ,k∈{1,2,...K} along all K models.

2 The DynFV Feature
One of the main objectives of this paper is to address the problem of re-identification in
appearance impaired scenarios such as the ones illustrated in Figures 1(a) and (b). In such
cases, gait and idiosyncratic motion patterns offer a natural complementary source of infor-
mation that is not affected by the lack of discriminating appearance-based features.

However, reliable estimation of motion-based biometrics, such as gait, is very challeng-
ing in crowded surveillance videos. In particular, it is very difficult to locate and consistently
track the joints of the targets which would be required for model-based gait extraction [33].
Although researchers recently proposed model-free gait estimation [26, 34], they require ex-
plicit contour/silhouette extraction for each frame, which is difficult to obtain in low quality
and crowded videos [36]. Because of this, we propose to use instead soft-biometric charac-
teristics provided by sets of dense, short trajectories (tracklets), which have been shown to
carry useful invariants [18].

A potential drawback of using dense tracklets is that there are many of them and that
they can exhibit large variability. Thus, it is important to have an effective way to aggregate
the information they could provide. Towards this goal, we propose to use pyramids of dense
trajectories with Fisher vector encoding, as illustrated in Figure 2 and described in detail
below.

2.1 Temporal Pyramids of Dense Trajectories
Given a short tracklet (Z1,Z2, . . . ,ZN), its Hankelet [18] is defined as the Hankel matrix:

HZ =




Z1 Z2 . . . Zk
Z2 Z3 . . . Zk+1
...

... . . .
...

Zl Zl+1 . . . ZN ,


 , (2)
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Figure 3: (a) Each trajectory of length l is associated a set of Hankelets, with increasing num-
ber of columns, where the rows are obtained by splitting the trajectory into shorter tracklets
of length a, using a sliding window with full overlap (stride of 1), as shown in (b).

where the constant off-diagonal structure of the matrix (depicted by elements painted with
the same color in Figure 3(a)) captures the dynamics of the data and carries properties that
are invariant to viewpoint changes and initial conditions [18]. The rank of the Hankelet
measures the complexity of the dynamics of the data, and the more complex the dynamics,
the more columns it can have before becoming column rank deficient.

Here, we propose to build a family of Hankelets for each trajectory (with an increasing
number of columns a) to capture possibly different dynamic complexities. The rows of
these Hankelets are obtained by splitting each trajectory of length l into shorter and shorter
tracklets, using a sliding window with full overlap (stride of one) as illustrated in Figure 3.

Intuitively, the rows of the Hankelets, i.e. short tracklets of increasing length, constitute
a set of temporal pyramids capturing different levels of dynamic complexity (since higher
order dynamics are represented using bigger Hankelets/longer tracklets). Since different
human body parts may have different dynamics, we split the bounding box of the person into
G grids and process each grid separately. Then, the temporal pyramid of the dynamics-based
features is built and Fisher vector encoded (see Figure 2) using Algorithm 1.

Algorithm 1 DynFV feature extraction

Require: number of grids G, length of tracklets l, set of temporal window size A
1: for grid g = 1 to G do
2: Extract dense tracklets Zg of length l in current grid1

3: Compute velocity vector V g

4: for ai ∈ A do
5: Extract l−ai shorter velocity vectors for each vector in V g with length ai and stride

of 1
6: Estimate a GMM model P for each velocity vector set Vai

g

7: Compute Fisher vector FP
Vai

g

8: Apply power normalization, followed by L2 normalization
9: end for

10: end for
11: Pool Fisher vectors by concatenating FP

Vai
g

along all grids
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3 Performance Evaluation
The second major objective of this paper is to present a thorough performance evaluation of
different features used in multi-shot unsupervised re-identification systems. We evaluated
the performance based on different combinations of features using five datasets. Two of
these datasets are standard in the re-id literature: iLIDSVID and PRID 2011. In addition to
these, we also used three new challenging datasets that we compiled to better evaluate the
re-id performance in “appearance impaired” scenarios.

3.1 Datasets and Experiment Protocol
Standard datasets: The iLIDSVID dataset [36] is a random collection of 300 per-
sons from the iLIDS Multiple-Camera Tracking Scenario [1]. For each person there are
two cropped (64× 128 pixels/frame) image sequences and the lengths vary from 23 to 192
frames. The PRID 2011 dataset [13] consists of cropped (64×128 pixels/frame) sequences
of 385 persons from camera A and 749 persons from camera B. To be consistent with pre-
vious work, as proposed by [36], we only use sequences of 178 persons that have more than
21 frames.
Appearance-Impaired datasets: To illustrate the need for dynamic-based fea-
tures we collected three more challenging “appearance-impaired” datasets. Two of them
consist of video sequences of people wearing black/dark clothing. They are subsets of the
iLIDS-VID and PRID 2011 datasets and we named them iLIDSVID BK and PRID 2011
BK, respectively. The third dataset, named the Train Station dataset (TSD), has sequences
of persons with different clothing and accessories. The BK extension datasets were col-
lected from the original datasets by manually selecting persons wearing black clothing. We
collected 97 and 35 identities for iLIDSVID BK and PRID BK, respectively. The TSD
dataset was collected with a single HD surveillance camera mounted at a public train sta-
tion. Figure 1(a) shows sample frames from this set. The dataset has 81 sequences, including
9 targets with 3 sequences wearing different clothing and 54 sequences of randomly selected
distractors. The length of the sequences vary from 41 to 451 frames with frames normalized
to 64×128 pixels. While all the sequences were captured by the same camera, the relative
viewpoint varies significantly when persons enter, re-enter and exit the scene.
Experimental protocol: To evaluate the merits of the proposed dynamic based fea-
tures, we do not apply any supervised metric learning method in the experiments. All ranking
results are obtained directly by using the Euclidean distance between feature vectors. For a
fair comparison, we only use the training data to learn the GMM model for the dynamic
features (DynFV) and the local descriptor (LDFV) features. For the iLIDSVID and PRID
datasets, we follow the protocol in [36]2. For the BK extension datasets, because the sizes of
the datasets are fairly small, we randomly pick the same size of training data in the non-BK
part (i.e. 89 and 150 persons for PRID and iLIDSVID respectively) and run two experiments
while a different camera is fixed as the probe set. For the TSD dataset, we only use the
distractors to learn the GMM model. During the testing, we randomly pick one sequence for
each target combined with all distractors to form the gallery set. This procedure is repeated
10 times. All experiments for DynFV and LDFV are repeated 10 times to remove the uncer-
tainty in the GMM learning step. We do not need any ground truth in the feature extraction
step.

1Location of each tracklet is determined by its starting point.
2We directly use the partition file from the project page of [36].



MENGRAN GOU, ET AL.: PERSON RE-ID IN APPEARANCE IMPAIRED SCENARIOS 7

3.2 Features
We compare unsupervised re-id performance when using different combinations of features.
We use six different types of features. Three of them are purely spatial features: Local De-
scriptors encoded by Fisher Vector (LDFV) [24], Color & LBP [14] and Hist & LBP [38];
two are mixed local spatio-temporal features: histogram of Gradients 3D (HOG3D) [16]
and temporal LDFV (tLDFV) [22]; and one is our proposed purely dynamics-based feature:
Dynamics-based features Fisher Vector encoded (DynFV). In all cases, before extracting the
features, every frame is normalized to 64× 128 pixels. In order to conduct a fair compar-
ison, we use the same spatial split for tLDFV and LDFV and applied mean pooling along
the temporal dimension for all features, except DynFV, before comparing. To get DynFV
feature, we extract sets of dense trajectories (15 frames long) using the code provided by
[35], in 18, 32×36 grids with 50% overlap. We set window sizeA= {5,9,14} and K = 12.
To remove the impact of the background, a mask was applied to each frame. The mask was
learned for each camera separately, as follows. First, semantic edges were obtained for each
frame from the training sequences using a structured forest [10]. Then, the resulting images
were averaged followed by a thresholding step to obtain a region covering semantic edges
with high average scores. When we combine different features, a simple score-level fusion
is applied. Source code is available online at http://robustsystems.coe.neu.edu and one can
find all parameters in detail there.
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Figure 4: CMC curves for iLIDSVID, PRID and the BK extension datasets

4 Experiments and Results
Next we present a series of experiments and discuss the results. In all cases we evaluate
performance by comparing ranking scores. Furthermore, for the analysis of the merits of
the features we also give Cumulative Match Curve (CMC) plots and report the Proportion of
Uncertainty Removed (PUR) [30] score.
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4.1 Feature Analysis
In these experiments we studied how different features affect re-id performance. The results
are reported in Table 1 to 3, where each row shows the performance when using a differ-
ent (sub)set of features and each column shows the performance of the same rank or PUR.
Features are grouped as follows. Rows 1-5: a single component (i.e. color or texture) of
a spatial feature; rows 6-8: multiple spatial features; rows 9-11: features that incorporate
temporal information; and rows 11-12: combinations of spatial and temporal features. The
best performance in each group is shown in bold.

Table 1: Results for iLIDSVID dataset and iLIDSVID BK dataset
iLIDSVID iLIDSVID BK

Feature 1 5 10 20 PUR 1 5 10 20 PUR
Histogram[38] 5.9 16.3 24.1 33.6 6.5 1.0 8.2 12.9 25.8 7.3

Mean[14] 18.7 39.2 50.8 62.4 23.8 7.2 25.3 35.1 46.9 11.4
LDFV-color[24] 14.2 29.8 37.2 47.0 12.6 4.6 12.5 24.7 37.5 5.8
LDFV-edge[24] 20.5 41.7 52.6 66.1 25.0 9.0 24.6 40.0 57.2 12.8

LBP[28] 11.4 27.3 38.1 48.1 12.3 9.3 27.3 36.1 50.5 15.1
HistLBP[38] 6.9 17.5 25.5 35.7 7.3 1.0 8.8 17.0 26.3 5.9

ColorLBP[14] 10.9 24.9 35.7 46.5 14.2 6.2 18.0 28.4 39.2 8.8
LDFV 16.5 35.6 44.2 54.3 17.8 6.0 21.3 32.8 45.3 9.9

HOG3D[16] 8.5 25.6 36.5 53.2 15.9 8.8 30.4 47.4 63.4 20.9
tLDFV[22] 18.0 37.1 45.9 56.9 19.7 5.8 22.3 32.4 48.9 10.4

DynFV (Ours) 14.4 39.2 54.7 74.3 26.7 18.6 50.8 68.7 83.1 30.6
HOG3D+LDFV 19.2 38.6 49.9 66.3 24.1 12.6 34.2 45.3 69.8 21.4
DynFV+LDFV 27.8 54.6 69.6 82.7 37.1 23.4 53.8 72.0 85.0 33.0

Table 2: Results for PRID dataset and PRID BK dataset
PRID PRID BK

Feature 1 5 10 20 PUR 1 5 10 20 PUR
Histogram[38] 15.6 32.5 44.7 55.7 12.2 4.3 22.9 37.1 62.9 7.7

Mean[14] 9.8 20.2 32.2 43.9 6.7 10.0 28.6 42.9 74.3 11.5
LDFV-color[24] 20.9 39.3 49.8 64.2 18.0 12.6 26.3 42.1 68.7 4.5
LDFV-edge[24] 28.6 54.0 64.2 80.1 29.5 21.4 55.6 72.7 90.6 20.6

LBP[28] 14.8 31.9 47.1 62.0 13.7 20.0 38.6 51.4 77.1 16.7
HistLBP[38] 18.0 38.2 51.1 61.8 16.1 7.1 32.9 45.7 68.6 7.0

ColorLBP[14] 9.0 23.0 33.6 49.1 8.5 11.4 30.0 51.4 72.9 11.4
LDFV[24] 30.7 49.3 62.4 74.0 26.6 21.9 45.3 69.3 93.4 18.5

HOG3D[16] 22.9 46.5 59.8 73.1 23.5 22.9 50.0 64.3 85.7 20.6
tLDFV[22] 31.2 53.5 65.5 75.0 28.4 22.0 45.6 71.4 92.9 20.2

DynFV (Ours) 19.9 50.2 68.2 85.3 29.4 38.6 76.9 89.6 100.0 41.6
HOG3D+LDFV 37.4 57.7 68.7 80.4 34.0 29.9 52.9 69.4 88.6 24.8
DynFV+LDFV 36.2 64.1 81.8 91.5 41.4 43.6 82.7 93.9 100.0 47.4

iLIDSVID (BK), PRID (BK) Sets: Figure 4 shows the CMC curves and Tables 1, 2 show
the re-id performance scores for the iLIDSVID and iLIDSVID BK, and for the PRID and
PRID BK datasets, respectively.

Spatial-based Features-Components: Color mean achieves the best performance among
the three color features for the iLIDSVID, iLIDSVID BK and PRID BK datasets, but LDFV-
edge outperforms color and LBP in the iLIDSVID, PRID and PRID BK datasets on rank-1
identification rate.

Spatial Features: Among all these features, LDFV gives the best performance. The
reason is two-fold. First, in general, Fisher vector encoding performs better than average
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pooling and histogram; and second, because the data consists of multiple frames, LDFV
has many samples to get better estimates of the underlying GMM. As expected, the perfor-
mances for all the spatial features, except LBP and ColorLBP in PRID BK dataset, decrease
notably when the features are used on the appearance impaired datasets, especially con-
sidering that these datasets have smaller galleries. This situation also holds for the spatial
features-components group.

Temporal information incorporated Features: HOG3D is a spatial and temporal based
feature. Its performance is significantly lower in comparison with purely spatial features in
the standard datasets. However, its performance does not degrade when used in the BK sets.
These results suggest that the temporal component of this feature helps distinguishing differ-
ent targets with similar appearance. It should be noted that we obtain better accuracy using
HOG3D in the PRID dataset than the results reported in Table 4 of [36]. A reason for this
is that instead of using only 4 uniformly sampled candidate fragments, we use all HOG3D
features from dense sampled cells to do average pooling, which provide more stable and less
noisy features. tLDFV incorporates local temporal information to the original LDFV, thus
it gives slightly better results among all datasets. However, the matching accuracy signifi-
cantly drops on the BK extension datasets, indicating that tLDFV highly relies on the spatial
part. In the original datasets, DynFV has rank-1 performance worse than tLDFV but simi-
lar to HistLBP and HOG3D and better or similar PUR performance among all single type
features, which is remarkable since DynFV does not use any type of spatial information. In
the appearance impaired sets, the DynFV significantly outperforms all spatial features and is
almost twice better than HOG3D and tLDFV, which illustrates the merit of using dynamic
information in this type of scenario.

Feature Fusion: The last two rows show that the performance improves when using
together spatial LDFV and temporal features together. As seen in both tables, joint use of
DynFV and LDFV gives much better results in the original iLIDVID and PRID datasets.
More precisely, using this combination provides a relative improvement of 108.4% and
55.6% at PUR performance with respect to using LDFV alone. These results show that
DynFV can be used as a powerful complementary feature in video sequences-based re-id.
On the other hand, including dynamic features in the impaired datasets increases the per-
formance considerably. At the rank-1 performance, it has a relative improvement of 290.0%
and 99.1%, respectively, which displays the advantage of DynFV under appearance impaired
scenarios.

Table 3: Results for TSD dataset.
TSD

Feature 1 5 10 20 PUR
Histogram[38] 35.6 56.1 69.4 75.0 35.9

Mean[14] 13.9 34.4 41.7 64.4 17.4
LDFV-color[24] 47.1 80.8 89.4 97.2 53.0
LDFV-edge[24] 53.6 71.7 89.4 99.4 54.0

LBP[28] 19.4 56.1 61.7 72.8 27.5
HistLBP[38] 35.6 56.1 69.4 75.0 36.6

ColorLBP[14] 13.9 33.3 40.6 63.3 18.1
LDFV[24] 44.5 79.2 95.2 99.4 54.7

HOG3D[16] 40.0 63.3 73.9 90.6 42.4
tLDFV[22] 44.3 78.9 96.9 99.4 55.5

DynFV (Ours) 45.7 72.7 89.9 92.2 48.5
HOG3D+LDFV 53.2 82.8 90.2 99.7 59.4
DynFV+LDFV 61.0 83.6 95.1 98.5 61.3

Table 4: Results with different window
sizes on PRID BK dataset

ai 1 5 10 20 PUR
5 36.0 73.7 90.9 100.0 40.0
9 38.4 77.6 88.7 98.6 40.3

14 31.3 72.9 89.9 98.9 35.9
5,9,14 38.6 76.9 89.6 100.0 41.6
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TSD Set: Table 3 shows the performance scores for the TSD dataset. Since several targets in
the dataset only partially change their appearance, spatial features perform fairly well here.
Though LDFV-edge performs the best among all single type features, DynFV feature still
provides significant complementary information. Combining LDFV with DynFV features
leads to a relative improvement of 37.1% at rank-1 accuracy.

4.2 Effect of Length of Sliding Window
This experiment evaluates the impact of the size of the sliding window used to generate the
pyramid of dense trajectories for DynFV. The first three rows in Table 4 show that, instead of
full length trajectories (ai = 14), the shorter, fully overlapped trajectories provide significant
performance gain at rank-1 accuracy. In particular, setting ai = 5 has a relative increase of
15% and ai = 9 has 22.7%. After combining all three pyramid levels, we achieved the best
performance both on rank-1 accuracy and PUR score.

5 Conclusion and Future Work
Until now, most re-id state-of-the-art approaches relied on appearance-based features, ex-
tracted from a single or a few images. These approaches do not use the videos which are
typically available in surveillance applications and are at a disadvantage in appearance im-
paired scenarios. In this paper, we proposed DynFV features to address these limitations and
introduced three new challenging appearance impaired re-id datasets. The proposed DynFV
feature exploits soft-biometrics, encapsulated in short dense trajectories associated with the
targets and benefits from the powerful Fisher vector encoding method. Our extensive ex-
periments show that DynFV features carry complementary information to previously used
features and that combining them with the state-of-art LDFV features, results in a relative
performance improvement at rank-1, compared against using LDFV alone, of 68% and 18%
for the iLIDSVID and PRID datasets, respectively, and of 290%, 99%, and 37% for the ap-
pearance deprived scenarios in the BK and TSD datasets, respectively. In the future, we will
investigate more intelligent feature fusion methods and incorporate supervised learning to
improve the performance.
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