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1 Solving the Optimization Problem

In this section we show how to solve the following problem,

min/max  (Xo, t) (1)
S.t. (ak, t> <by, k= 1,27...,1’117 2)
HXiftH SOC<X,‘7 Xi7t>. 3)

From optimization theory it is well known that if the optimal solution exists it must lie at
a Karush-Kuhn-Tucker (KKT) point [1]. In this section we explicitly enumerate the KKT
points for (1). The Lagrangian is given by

p
L(t, ) = (xo, t) +po (| Xi —t]] — e (xi;, Xi =) + Y puc (g, £) — by) )
k=1
and the first order necessary condition is

X, —t
X — ]

p
+ OCX,') + Z Miag. 5

0= VeL(t, 1) = x0 -+ Ho (—
k=1

First we consider the case when the cone constraint (3) is not active (i.e. o = 0). Then (5)
becomes xg + ZZ; Weay = 0, i.e. Xp is a linear combination of the plane normals a; from
the active planar constraints. By the construction of the plane normals it is clear that xo can
never be formed using only two adjacent plane normals. Thus the active planar constraints
are either two non-adjacent planes or more than two planes. In either case the only feasible
point is t = X (i.e. the apex of the approximated cone).

Next assume instead that the constraint in (3) is active (i.e. gy # 0). There are four
possibilities for the other constraints.

(© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Boyd and Vandenberghe} 2004


2 LARSSON, FREDRIKSSON, TOFT, KAHL: OUTLIER REJECTION FOR ABSOLUTE POSE

(i) No planar constraints active. (1 =0, k=1,2,...,np)
(i1) One planar constraint active.
(iii)) Two adjacent planar constraints active.
(iv) All planar constraints active.

For the first case (i), equation (5) reduces to

X;—t

—1
=t = %o+ o (6)
X, —g] Mo XX

Since the left hand side is a unit vector we get the following constraint on L

H'U,O_IX0+aX[||2:1 — 14200 (x0,%;) + (> =g =0 7

2 _

0 — Y
which allows us to determine . Since to # 0 we can use || X; — t|| = & (x;, X; —t) to obtain
the translation from (6). Using the constraint it reduces to

(I — aupty "xo + ax;)x! ) (X; —t) = 0. 8)

The matrix is invertible since both (N6 lxo + ax;) and x; are unit vectors and @ < 1. Thus
there is only the (false) solution t = X;.

Next we consider the second case (if) where there is only one active planar constraint.
Without loss of generality assume that tt; # O is the active planar constraint. Then (5) reduces
to

X;
X0 + o <—+O€Xi> +wa; =0. 9
[1X; —t]
Since the planar constraint is active the equation ath = by is satisfied. By taking the scalar
product of (9) with (a; X x¢) and using the cone constraint (3) we get

(a1 x x0)" (I—o*x;x!) (t—X;) =0, (10)

which gives us a second linear constraint on t. From these two linear equations we get a one-
parameter family of possible translations t and intersecting this with the cone in (3) gives us
two possible translations.

For the third case (iii) we have two adjacent planes which are both active. This con-
strains the translation to a line and similarly to the previous case we get two solutions when
intersecting with the cone constraint (3).

Finally when all planar constraints are active (iv) the only feasible point is the apex of
the (approximated) cone t = X.

So to find the bounds for the projection we simply enumerate all possible KKT points,
check feasibility and compute the function values. Since the cone constraint is not differen-
tiable at t = X; we also check this point. Furthermore we must check if the maximization
problem is unbounded. For this we simply check if there is an intersection and the the angle
between the cones is less than the widths of the cones.
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