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Abstract

Given the vast amounts of video available online and recent breakthroughs in object
detection with static images, object detection in video offers a promising new frontier.
However, motion blur and compression artifacts cause substantial frame-level variability,
even in videos that appear smooth to the eye. Additionally, in video datasets, frames are
typically sparsely annotated. We present a new framework for improving object detec-
tion in videos that captures temporal context and encourages consistency of predictions.
First, we train a pseudo-labeler, i.e., a domain-adapted convolutional neural network for
object detection, on the subset of labeled frames. We then subsequently apply it to pro-
visionally label all frames, including those absent labels. Finally, we train a recurrent
neural network that takes as input sequences of pseudo-labeled frames and optimizes an
objective that encourages both accuracy on the target frame and consistency across con-
secutive frames. The approach incorporates strong supervision of target frames, weak-
supervision on context frames, and regularization via a smoothness penalty. Our ap-
proach achieves mean Average Precision (mAP) of 68.73, an improvement of 7.1 over
the strongest image-based baselines for the Youtube-Video Objects dataset. Our exper-
iments demonstrate that neighboring frames can provide valuable information, even ab-
sent labels.

1 Introduction
Despite the immense popularity and availability of online video content via outlets such as
Youtube and Facebook, most work on object detection focuses on static images. Given the
breakthroughs of deep convolutional neural networks for detecting objects in static images,
the application of these methods to video might seem straightforward. However, motion blur
and compression artifacts cause substantial frame-to-frame variability, even in videos that
appear smooth to the eye. These attributes complicate prediction tasks like classification and
localization. Object-detection models trained on images tend not to perform competitively
on videos owing to domain shift factors [13]. Moreover, object-level annotations in popular
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video data-sets can be extremely sparse, impeding the development of better video-based
object detection models.

Girshik et al. [10] demonstrate that even given scarce labeled training data, high-capacity
convolutional neural networks can achieve state of the art detection performance if first pre-
trained on a related task with abundant training data, such as 1000-way ImageNet classifi-
cation. Followed the pretraining, the networks can be fine-tuned to a related but distinct do-
main. Also relevant to our work, the recently introduced models Faster R-CNN [23] and You
Look Only Once (YOLO) [22] unify the tasks of classification and localization. These meth-
ods, which are accurate and efficient, propose to solve both tasks through a single model,
bypassing the separate object proposal methods used by R-CNN [10].

In this paper, we introduce a method to extend unified object recognition and localization
to the video domain. Our approach applies transfer learning from the image domain to video
frames. Additionally, we present a novel recurrent neural network (RNN) method that refines
predictions by exploiting contextual information in neighboring frames. In summary, we
contribute the following:

• A new method for refining a video-based object detection consisting of two parts: (i)
a pseudo-labeler, which assigns provisional labels to all available video frames. (ii) A
recurrent neural network, which reads in a sequence of provisionally labeled frames,
using the contextual information to output refined predictions.

• An effective training strategy utilizing (i) category-level weak-supervision at every
time-step, (ii) localization-level strong supervision at final time-step (iii) a penalty
encouraging prediction smoothness at consecutive time-steps, and (iv) similarity con-
straints between pseudo-labels and prediction output at every time-step.

• An extensive empirical investigation demonstrating that on the YouTube Objects [21]
dataset, our framework achieves mean average precision (mAP) of 68.73 on test data,
compared to a best published result of 37.41 [28] and 61.66 for a domain adapted
YOLO network [22].

2 Methods
In this work, we aim to refine object detection in video by utilizing contextual information
from neighboring video frames. We accomplish this through a two-stage process. First, we
train a pseudo-labeler, that is, a domain-adapted convolutional neural network for object
detection, trained individually on the labeled video frames. Specifically, we fine-tune the
YOLO object detection network [22], which was originally trained for the 20-class PASCAL
VOC [6] dataset, to the Youtube-Video [21] dataset.

When fine-tuning to the 10 sub-categories present in the video dataset, our objective is to
minimize the weighted squared detection loss (equation 3) as specified in YOLO [22]. While
fine-tuning, we learn only the parameters of the top-most fully-connected layers, keeping the
24 convolutional layers and 4 max-pooling layers unchanged. The training takes roughly 50
epochs to converge, using the RMSProp [27] optimizer with momentum of 0.9 and a mini-
batch size of 128.

As with YOLO [22], our fine-tuned pseudo− labeler takes 448× 448 frames as input
and regresses on category types and locations of possible objects at each one of S× S non-
overlapping grid cells. For each grid cell, the model outputs class conditional probabilities



TRIPATHI ET AL.: REFINING VIDEO OBJECT DETECTION WITH RNN 3

as well as B bounding boxes and their associated confidence scores. As in YOLO, we con-
sider a responsible bounding box for a grid cell to be the one among the B boxes for which
the predicted area and the ground truth area shares the maximum Intersection Over Union.
During training, we simultaneously optimize classification and localization error (equation
3). For each grid cell, we minimize the localization error for the responsible bounding box
with respect to the ground truth only when an object appears in that cell.

Next, we train a Recurrent Neural Network (RNN), with Gated Recurrent Units (GRUs)
[3]. This net takes as input sequences of pseudo-labels, optimizing an objective that encour-
ages both accuracy on the target frame and consistency across consecutive frames. Given
a series of pseudo-labels x(1), ...,x(T ), we train the RNN to generate improved predictions
ŷ(1), ..., ŷ(T ) with respect to the ground truth y(T ) available only at the final step in each se-
quence. Here, t indexes sequence steps and T denotes the length of the sequence. As output,
we use a fully-connected layer with a linear activation function, as our problem is regression.
In our final experiments, we use a 2-layer GRU with 150 nodes per layer, hyper-parameters
determined on validation data.

The following equations define the forward pass through a GRU layer, where h(t)
l denotes

the layer’s output at the current time step, and h(t)
l−1 denotes the previous layer’s output at the

same sequence step:

r(t)l = σ(h(t)
l−1W xr

l +h(t−1)
l W hr

l +br
l )

u(t)
l = σ(h(t)

l−1W xu
l +h(t−1)

l W hu
l +bu

l )

c(t)l = σ(h(t)
l−1W xc

l + rt � (h(t−1)
l W hc

l )+bc
l )

h(t)
l = (1−u(t)

l )�h(t−1)
l +u(t)

l � c(t)l

(1)

Here, σ denotes an element-wise logistic function and � is the (element-wise) Hadamard
product. The reset gate, update gate, and candidate hidden state are denoted by r, u, and c
respectively. For S = 7 and B = 2, the pseudo-labels x(t) and prediction ŷ(t) both lie in R1470.

2.1 Training
We design an objective function (Equation 2) that accounts for both accuracy at the target
frame and consistency of predictions across adjacent time steps in the following ways:

loss = d_loss+α · s_loss+β · c_loss+ γ ·pc_loss (2)

Here, d_loss, s_loss, c_loss and pc_loss stand for detection_loss, similarity_loss, category_loss
and prediction_consistency_loss described in the following sections. The values of the
hyper-parameters α = 0.2, β = 0.2 and γ = 0.1 are chosen based on the detection perfor-
mance on the validation set. The training converges in 80 epochs for parameter updates
using RMSProp [27] and momentum 0.9. During training we use a mini-batch size of 128
and sequences of length 30.

2.1.1 Strong Supervision at Target Frame

On the final output, for which the ground truth classification and localization is available, we
apply a multi-part object detection loss as described in YOLO [22].
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where 1ob j
i denotes if the object appears in cell i and 1

ob j
i j denotes that jth bounding box

predictor in cell i is responsible for that prediction. The loss function penalizes classification
and localization error differently based on presence or absence of an object in that grid
cell. xi,yi,wi,hi corresponds to the ground truth bounding box center coordinates, width
and height for objects in grid cell (if it exists) and x̂i, ŷi, ŵi, ĥi stand for the corresponding
predictions. Ci and Ĉi denote confidence score of objectness at grid cell i for ground truth
and prediction. pi(c) and p̂i(c) stand for conditional probability for object class c at cell
index i for ground truth and prediction respectively. We use similar settings for YOLO’s
object detection loss minimization and use values of λcoord = 5 and λnoob j = 0.5.

2.1.2 Similarity between Pseudo-labels and Predictions

Our objective function also includes a regularizer that penalizes the dissimilarity between
pseudo-labels and the prediction at each time frame t.

similarity_loss =
T

∑
t=0

S2

∑
i=0

Ĉ(t)
i

(
x(t)i − ŷi

(t)
)2

(4)

Here, x(t)i and ŷi
(t) denote the pseudo-labels and predictions corresponding to the i-th grid

cell at t-th time step respectively. We perform minimization of the square loss weighted by
the predicted confidence score at the corresponding cell.

2.1.3 Object Category-level Weak-Supervision

Replication of the static target at each sequential step has been shown to be effective in
[4, 18, 30]. Of course, with video data, different objects may move in different directions
and speeds. Yet, within a short time duration, we could expect all objects to be present. Thus
we employ target replication for classification but not localization objectives.

We minimize the square loss between the categories aggregated over all grid cells in the
ground truth y(T ) at final time step T and predictions ŷ(t) at all time steps t. Aggregated
category from the ground truth considers only the cell indices where an object is present.
For predictions, contribution of cell i is weighted by its predicted confidence score Ĉ(t)

i .
Note that cell indices with positive detection are sparse. Thus, we consider the confidence
score of each cell while minimizing the aggregated category loss.
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2.1.4 Consecutive Prediction Smoothness

Additionally, we regularize the model by encouraging smoothness of predictions across con-
secutive time-steps. This makes sense intuitively because we assume that objects rarely move
rapidly from one frame to another.

prediction_consistency_loss =
T−1

∑
t=0

(
ŷi

(t)− ŷi
(t+1)

)2
(6)

2.2 Inference
The recurrent neural network predicts output at every time-step. The network predicts 98
bounding boxes per video frame and class probabilities for each of the 49 grid cells. We
note that for every cell, the net predicts class conditional probabilities for each one of the
C categories and B bounding boxes. Each one of the B predicted bounding boxes per cell
has an associated objectness confidence score. The predicted confidence score at that grid
is the maximum among the boxes. The bounding box with the highest score becomes the
responsible prediction for that grid cell i.

The product of class conditional probability p̂(t)i (c) for category type c and objectness
confidence score Ĉ(t)

i at grid cell i, if above a threshold, infers a detection. In order for an
object of category type c to be detected for i-th cell at time-step t, both the class conditional
probability p̂(t)i (c) and objectness score Ĉ(t)

i must be reasonably high.
Additionally, we employ Non-Maximum Suppression (NMS) to winnow multiple high

scoring bounding boxes around an object instance and produce a single detection for an
instance. By virtue of YOLO-style prediction, NMS is not critical.

3 Experimental Results
In this section, we empirically evaluate our model on the popular Youtube-Objects dataset,
providing both quantitative results (as measured by mean Average Precision) and subjective
evaluations of the model’s performance, considering both successful predictions and failure
cases.

The Youtube-Objects dataset[21] is composed of videos collected from Youtube by
querying for the names of 10 object classes of the PASCAL VOC Challenge. It contains
155 videos in total and between 9 and 24 videos for each class. The duration of each video
varies between 30 seconds and 3 minutes. However, only 6087 frames are annotated with
6975 bounding-box instances. The training and test split is provided.

3.1 Experimental Setup
We implement the domain-adaption of YOLO and the proposed RNN model using Theano
[26]. Our best performing RNN model uses two GRU layers of 150 hidden units each
and dropout of probability 0.5 between layers, significantly outperforming domain-adapted
YOLO alone. While we can only objectively evaluate prediction quality on the labeled
frames, we present subjective evaluations on sequences.
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Average Precision on 10-categories

Methods airplane bird boat car cat cow dog horse mbike train

DPM[7] 28.42 48.14 25.50 48.99 1.69 19.24 15.84 35.10 31.61 39.58
VOP[28] 29.77 28.82 35.34 41.00 33.7 57.56 34.42 54.52 29.77 29.23
YOLO[22] 76.67 89.51 57.66 65.52 43.03 53.48 55.81 36.96 24.62 62.03
DA YOLO 83.89 91.98 59.91 81.95 46.67 56.78 53.49 42.53 32.31 67.09

RNN-IOS 82.78 89.51 68.02 82.67 47.88 70.33 52.33 61.52 27.69 67.72
RNN-WS 77.78 89.51 69.40 78.16 51.52 78.39 47.09 81.52 36.92 62.03
RNN-PS 76.11 87.65 62.16 80.69 62.42 78.02 58.72 81.77 41.54 58.23

Table 1: Per-category object detection results for the Deformable Parts Model (DPM), Video
Object Proposal based AlexNet (VOP), image-trained YOLO (YOLO), domain-adapted
YOLO (DA-YOLO). RNN-IOS regularizes on input-output similarity, to which RNN-WS
adds category-level weak-supervision, to which RNN-PS adds a regularizer encouraging
prediction smoothness.

3.2 Objective Evaluation

We compare our approach with other methods evaluated on the Youtube-Objects dataset.
As shown in Table 3.2 and Table 3.2, Deformable Parts Model (DPM) [7])-based detector
reports [13] mean average precision below 30, with especially poor performance in some
categories such as cat. The method of Tripathi et al. (VPO) [28] uses consistent video
object proposals followed by a domain-adapted AlexNet classifier (5 convolutional layer, 3
fully connected) [16] in an R-CNN [10]-like framework, achieving mAP of 37.41. We also
compare against YOLO (24 convolutional layers, 2 fully connected layers), which unifies
the classification and localization tasks, and achieves mean Average Precision over 55.

In our method, we adapt YOLO to generate pseudo-labels for all video frames, feeding
them as inputs to the refinement RNN. We choose YOLO as the pseudo-labeler because
it is the most accurate among feasibly fast image-level detectors. The domain-adaptation
improves YOLO’s performance, achieving mAP of 61.66.

Our model with RNN-based prediction refinement, achieves superior aggregate mAP
to all baselines. The RNN refinement model using both input-output similarity, category-
level weak-supervision, and prediction smoothness performs best, achieving 68.73 mAP.
This amounts to a relative improvement of 11.5% over the best baselines. Additionally, the
RNN improves detection accuracy on most individual categories (Table 3.2).

While we don’t compare against conditional random fields (CRFs) or hidden Markov
models (HMMs), we point to the growing body of recent work demonstrating the superior
predictive accuracy achieved by RNNs. On tasks ranging from video analysis to speech
recognition, when ample data is available, RNNs yield state of the art performance [1].
Notably [31] shows RNNs outperform stand-alone CRF-based approaches [15] for structured
prediction on the task of semantic image segmentation.

mean Average Precision on all categories

Methods DPM VOP YOLO DA YOLO RNN-IOS RNN-WS RNN-PS

mAP 29.41 37.41 56.53 61.66 65.04 67.23 68.73
Table 2: Overall detection results on Youtube-Objects dataset. Our best model (RNN-PS)
provides 7% improvements over DA-YOLO baseline.
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3.3 Subjective Evaluation
We provide a subjective evaluation of the proposed RNN model in Figure 1. Top and bottom
rows in every pair of sequences correspond to pseudo-labels and results from our approach
respectively. While only the last frame in each sequence has associated ground truth, we
can observe that the RNN produces more accurate and more consistent predictions across
time frames. The predictions are consistent with respect to classification, localization and
confidence scores.

In the first example, the RNN consistently detects the dog throughout the sequence, even
though the pseudo-labels for the first two frames were wrong (bird). In the second example,
pseudo-labels were motorbike, person, bicycle and even none at different time-steps. How-
ever, our approach consistently predicted motorbike. The third example shows that the RNN
consistently predicts both of the cars while the pseudo-labeler detects only the smaller car
in two frames within the sequence. The last two examples show how the RNN increases its
confidence scores, bringing out the positive detection for cat and car respectively both of
which fell below the detection threshold of the pseudo-labeler.

3.4 Areas For Improvement
The YOLO scheme for unifying classification and localization [22] imposes strong spatial
constraints on bounding box predictions since each grid cell can have only one class. This
restricts the set of possible predictions, which may be undesirable in the case where many
objects are in close proximity. Additionally, the rigidity of the YOLO model may present
problems for the refinement RNN, which encourages smoothness of predictions across the
sequence of frames. Consider, for example, an object which moves slightly but transits from
one grid cell to another. Here smoothness of predictions seems undesirable.

Figure 2 shows some failure cases. In the first case, the pseudo-labeler classifies the
instances as dogs and even as birds in two frames whereas the ground truth instances are
horses. The RNN cannot recover from the incorrect pseudo-labels. Strangely, the model
increases the confidence score marginally for a different wrong category cow. In the second
case, possibly owing to motion and close proximity of multiple instances of the same object
category, the RNN predicts the correct category but fails on localization. These point to
future work to make the framework robust to motion.

The category-level weak supervision in the current scheme assumes the presence of all
objects in nearby frames. While for short snippets of video this assumption generally holds,
it may be violated in case of occlusions, or sudden arrival or departure of objects. In addition,
our assumptions regarding the desirability of prediction smoothness can be violated in the
case of rapidly moving objects.

4 Related Work
Our work builds upon a rich literature in both image-level object detection,video analysis,
and recurrent neural networks. Several papers propose ways of using deep convolutional
networks for detecting objects [2, 9, 10, 11, 19, 22, 23, 24, 25, 29]. Some approaches classify
the proposal regions [10, 11] into object categories and some other recent methods [22, 23]
unify the localization and classification stages. Kalogeiton et al. [13] identifies domain shift
factors between still images and videos, necessitating video-specific object detectors. To deal
with shift factors and sparse object-level annotations in video, researchers have proposed
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Figure 1: Object detection results from the final eight frames of five different test-set se-
quences. In each pair of rows, the top row shows the pseudo-labeler and the bottom row
shows the RNN. In the first two examples, the RNN consistently predicts correct categories
dog and motorbike, in contrast to the inconsistent baseline. In the third sequence, the RNN
correctly predicts multiple instances while the pseudo-labeler misses one. For the last two
sequences, the RNN increases the confidence score, detecting objects missed by the baseline.

Figure 2: Failure cases for the proposed model. Left: the RNN cannot recover from incorrect
pseudo-labels. Right: RNN localization performs worse than pseudo-labels possibly owing
to multiple instances of the same object.
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several strategies. Recently, [28] proposed both transfer learning from the image domain to
video frames and optimizing for temporally consistent object proposals. Their approach is
capable of detecting both moving and static objects. However, the object proposal generation
step that precedes classification is slow.

Prest et al. [20], utilize weak supervision for object detection in videos via category-level
annotations of frames, absent localization ground truth. This method assumes that the target
object is moving, outputting a spatio-temporal tube that captures this most salient moving
object. This paper, however, does not consider context within video for detecting multiple
objects.

A few recent papers [2, 19] identify the important role of context in visual recognition.
For object detection in images, Bell et al. [2] use spatial RNNs to harness contextual in-
formation, showing large improvements on PASCAL VOC [6] and Microsoft COCO [17]
object detection datasets. Their approach adopts proposal generation followed by classifica-
tion framework. This paper exploits spatial, but not temporal context.

Recently, Kang et al. [14] introduced tubelets with convolutional neural networks (T-
CNN) for detecting objects in video. T-CNN uses spatio-temporal tubelet proposal gener-
ation followed by the classification and re-scoring, incorporating temporal and contextual
information from tubelets obtained in videos. T-CNN won the recently introduced ImageNet
object-detection-from-video (VID) task with provided densely annotated video clips. Al-
though the method is effective for densely annotated training data, it’s behavior for sparsely
labeled data is not evaluated.

By modeling video as a time series, especially via GRU [3] or LSTM RNNs[12], several
papers demonstrate improvement on visual tasks including video classification [30], activity
recognition [5], and human dynamics [8]. These models generally aggregate CNN features
over tens of seconds, which forms the input to an RNN. They perform well for global descrip-
tion tasks such as classification [5, 30] but require large annotated datasets. Yet, detecting
multiple generic objects by explicitly modeling video as an ordered sequence remains less
explored.

Our work differs from the prior art in a few distinct ways. First, this work is the first, to
our knowledge, to demonstrate the capacity of RNNs to improve localized object detection
in videos. The approach may also be the first to refine the object predictions of frame-level
models. Notably, our model produces significant improvements even on a small dataset with
sparse annotations.

5 Conclusion
We introduce a framework for refining object detection in video. Our approach extracts
contextual information from neighboring frames, generating predictions with state of the art
accuracy that are also temporally consistent. Importantly, our model benefits from context
frames even when they lack ground truth annotations.

For the recurrent model, we demonstrate an efficient and effective training strategy that
simultaneously employs localization-level strong supervision, category-level weak-supervision,
and a penalty encouraging smoothness of predictions across adjacent frames. On a video
dataset with sparse object-level annotation, our framework proves effective, as validated by
extensive experiments. A subjective analysis of failure cases suggests that the current ap-
proach may struggle most on cases when multiple rapidly moving objects are in close prox-
imity. Likely, the sequential smoothness penalty is not optimal for such complex dynamics.

Our results point to several promising directions for future work. First, recent state of
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the art results for video classification show that longer sequences help in global inference.
However, the use of longer sequences for localization remains unexplored. We also plan
to explore methods to better model local motion information with the goal of improving
localization of multiple objects in close proximity. In another promising direction, we would
like to experiment with loss functions that incorporate specialized handling of classification
and localization objectives.
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