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Abstract

The goal of Shape-from-Template (SfT) is to register and reconstruct the 3D shape
of a deforming surface from a single image and a known deformable 3D template. Most
SfT methods use only motion information and require well-textured surfaces which de-
form smoothly. Consequently they are unsuccessful for poorly-textured surfaces with
complex deformations such as creases. We propose to combine shading and motion to
handle these cases. There exist a few previous works which also exploit shading. How-
ever these do not provide an integrated solution, and they assume the surface and its
deformations are globally smooth. Furthermore, most require a training phase and a pri-
ori photometric calibration for surface reflectance, camera response and/or light, which
is often not possible. We propose an integrated solution without these shortcomings by
jointly reconstructing the surface and performing photometric auto-calibration, consider-
ing an unknown light source which is constant and fixed in the camera coordinates. We
evaluate with qualitative and quantitative results and show that it is possible to accurately
register and reconstruct poorly-textured surfaces with complex deformations without any
a priori photometric calibration.

1 Introduction, Background and Contributions
The problem of reconstructing a deformable 3D surface from 2D images has been addressed
with three main approaches: Shape-from-Template (SfT) which uses a single image and a 3D
deformable template, Shape-from-Shading (SfS) which uses a single image only, and Non-
Rigid Structure-from-Motion (NRSfM) which uses multiple images. The most practical and
robust approach is currently SfT, because the 3D template provides strong constraints on the
problem [4, 18] and can be solved uniquely. In SfT, the template is a textured 3D model of
the surface in a rest position, and the problem is solved by determining the 3D deformation
that transforms the template into camera coordinates. The limitation of nearly all existing
SfT methods is that they use only motion constraints, either by matching features such as
SIFT between the template and the image [14, 18], or by densely matching at the pixel
level [4, 12, 21]. These methods cannot therefore accurately reconstruct deformations at tex-
tureless regions (where motion information is unobtainable). On the other hand, SfS works
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exclusively with shading information through the photometric relationship between surface
normals, light and pixel intensities [9, 22]. Shading is the most important visual cue for in-
ferring high-frequency deformation at textureless regions [15]. SfS works by estimating the
depths of each image pixel without the use of a 3D template, and can be used to reconstruct
textureless surfaces. However SfS is often very difficult to use in practice for several rea-
sons. Firstly it is a weakly-constrained problem and usually requires a complete photometric
calibration of the scene a priori. A photometric calibration involves modeling surface re-
flectance (diffuse reflection, albedos, specular reflection, etc. ), light, camera response and
determining the model parameters. This is required in SfS because the problem is generally
ill-posed if either surface reflectance, light or camera response parameters are unknown. Fur-
thermore, SfS can only reconstruct up to scale, it cannot reconstruct self-occluded surfaces,
and often suffers from discrete convex/concave ambiguities. Furthermore, in many appli-
cations such as Augmented Reality (AR) registration is required as well as reconstruction,
which unlike SfT is not given by SfS.

There exist some related works on combining the advantages of SfS with SfT [11, 13,
20], however they have three main shortcomings. Firstly they do not formulate the problem
as an integrated problem that combines all constraints. Secondly they require the surface
and its deformations to be smooth, so the full power of shading constraints are not exploited.
Thirdly, they require a photometric calibration a priori (either a complete calibration [11, 20]
or a partial one [13]). [20] works by first segmenting the surface into textured and textureless
regions, then the textured regions are independently reconstructed by an SfT method. Sec-
ondly, local textureless patches on the surface are independently reconstructed by applying
a trained SfS regressor. In a final stage, the patches are stitched together to form the final
surface. The regressor is trained from simulated images of the patch using a set of smooth
training deformations, which requires a priori photometric calibration at both training and
test times (and it has to be the same), so it cannot e.g. handle changes in illumination or
camera exposure. [13] works by first transforming the template to camera coordinates using
motion constraints (coming from point correspondences). The transform is not unique but
up to a low-dimensional set of solutions. In a final stage, shading information is used to
disambiguate the correct solution. Its main limitation is that the correct solution must be
contained in the solution set, which is only possible if the surface and its deformations are
extremely smooth. [11] requires complete photometric calibration and can also only recon-
struct simple, smooth surfaces. Another drawback of [11, 20] is they assume the surface has
a single albedo which is very restrictive.

We propose a novel, fully-integrated approach to combine shading constraints with SfT.
This combines all the advantages of SfS and SfT. As with SfT, we use the 3D template to
provide strong physical constraints on the surface’s 3D shape and use shading constraints
to reveal the complex deformations. The problem is solved by optimizing the template’s
shape using motion, shading and physical deformation constraints, whilst jointly performing
photometric auto-calibration required to use shading. Our approach shows that it is possible
to reconstruct a surface with complex, non-smooth deformations at all visible regions (both
textured and textureless), and without any a priori photometric calibration. This has not been
possible with previous SfS and SfT approaches. In §2, we present the general problem and
specialize it to the case of a constant light source rigidly attached to the camera. In §3, we
present our optimization framework. In §4, we validate our method with quantitative and
qualitative results.
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2 Problem Modeling

2.1 Template Definition

We define the template as three components: a shape model, a deformation model and a
reflectance model. The shape model is a standard, texture-mapped thin shell 3D mesh model
in a known reference pose consisting of a set of M 3D vertices y , {y1, ...,yM} ∈ R3×M

and F faces F , { f1, ..., fF} , fk ∈ [1,M]3. The deformation model transforms each vertex
to 3D camera coordinates. In order to capture complex deformations we do not use a low-
dimensional deformation model (which is typically used in SfT [13, 14]), but instead model
the position of each vertex i ∈ {1 . . .M} in camera coordinates by xi

t ∈ R3, where t denotes
time. Therefore our task is to determine the set xt ,

{
x1

t , ...,xM
t
}
∈ R3×M at any time t.

The reflectance model defines the reflectance of each point on the template’s surface. We
use a Lambertian model, which gives a good approximation of many surfaces, and we handle
model deviations due to e.g. specular reflections with a robust data term (see §2.3). Because
the template is texture-mapped, we also have a texture-map image T (u) : R2 → R which
models the intensity of any point u on the template’s surface. In the SfT problem, T is typi-
cally generated from photographs of the template in its rest position [5], but it can also come
from a CAD model [4]. The values in T do not in general correspond to surface albedo:
If T is generated from photographs then it is formed from a complex process that mixes
camera responses, albedos, illumination, and image blending (to merge the photographs). If
T comes from a CAD model then it does not usually consider physical aspects that alter the
albedo (e.g. surface roughness). However, to apply shading constraints we need the surface
albedos. We define an albedo texture-map A(u) : R2→R as a texture-map image that gives
the surface albedos. Thus our task is to transform T into A. To simplify the problem we as-
sume that A is piecewise constant, which is valid for many surfaces (particularly man-made
ones). A is therefore given by A(u) : R2→ {α1, ...,αK} where αk denotes the kth unknown
albedo value, where K is also unknown. We transform a point u ∈ A on the photometric
texture-map to camera coordinates according to xt with a barycentric interpolation, which is
a linear interpolation of the positions of the three vertices surrounding u. We use the func-
tion f (u;xt) : R2→R3 to represent the transform of u to camera coordinates according to xt
(which is linear in xt ), and n(u;xt) : R2→ SS31 to represent its unit surface normal.

2.2 Illumination and Camera Models

We assume that the scene is illuminated by an unknown illumination which is constant over
time and fixed in the camera coordinates. This is the setup both for a camera/light rig such as
an endoscope, and a non-rig where the illumination and camera are not physically connected
but do not move relative to each other whilst the images are being acquired. We use l to
denote the unknown illumination coefficients. In this work we use first and second-order
spherical harmonic models, which are very common models in SfS, with 4 and 9 parameters
respectively. We use the function r(n, l) : SS31 → R+ to denote the surface irradiance (the
amount of light received by the surface per unit area) for a normal vector n according to l.
Note that for spherical harmonics r is linear in l. The camera response function I , gt(R) :
R→ R transforms the image irradiance R to pixel intensity I. We assume gt is unknown
and time-varying, which allows us to handle changes due to camera shutter speed and/or
exposure. Similar to most works in SfS, we assume gt is linear, which gives I = βtR with
βt ∈ R+. We assume the camera is perspective and intrinsically calibrated for all images
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(which is the typical assumption in SfT). All pixel positions are therefore given in normalized
pixel coordinates. We use π : R3→ R2 to denote the projection from camera coordinates to
normalized pixel coordinates.

2.3 The Integrated Cost Function
We first write the integrated cost function and then describe each term in detail. The cost
function consists of image data terms (motion and shading terms) and physical deformation
prior terms. For surfaces which have disc topology such as sections of cloth or sheets of
paper, we also introduce a boundary data term similar to [19]. This encourages the surface’s
boundary to lie close to image edges and is useful for poorly textured surfaces. For a time
t we use xt ∈ R3×M to denote the template’s unknown deformed vertices. The cost function
Ct for a single intensity image It is denoted by:

Ct(xt , l,α1, . . . ,αK ,βt ;It),Cshade(xt , l,α1, . . . ,αK ,βt ;It)+

λmotionCmotion(xt ;It)+λboundCbound(xt ;It)+λisoCiso(xt)+λsmoothCsmooth(xt).
(1)

The terms Cshade, Cmotion and Cbound are shading, motion and boundary data terms respec-
tively. The terms Csmooth and Ciso are physical deformation prior terms, which encourage
the deformation to be smooth (Csmooth) and to not significantly stretch or shrink as it de-
forms (typically referred as an isometric prior in SfT, given by Ciso). The terms λmotion,
λbound , λiso and λsmooth are positive weights that we select by hand and keep constant for all
experiments. We do not assume dependency between the camera responses and surface de-
formations across different images, which allows us to handle both unorganised image sets
and images from video streams. Given a set of N input images we define the complete cost
function C as the sum of costs from each image: C , ∑N

t=1 Ct . In this work we consider batch
sets, where the N images are provided as inputs at once, rather than incremental sets, where
the images come sequentially from a capture device.

The shading term. The shading term robustly encodes the Lambertian relationship be-
tween albedo, surface irradiance, pixel intensity and camera response. We evaluate this at
each pixel in the photometric texture-map A, which gives:

Cshade (xt , l,α1, . . . ,αK ,βt ;It), ∑
u∈A

ρ (βtA(u)r (n(u;xt); l)−It (π ◦ f (u;xt))) . (2)

The function ρ : R→ R is an M-estimator which is used to enforce similarity between the
modeled and measured pixel intensities, while also allowing for some points to violate the
model (caused by specular reflection and other unmodeled factors). When the residual of
such points is not too high, we find that an M-estimator is very effective for handle them. We
also use M-estimators in some of the other cost function terms, and defer the exact choice to
the implementation section.

The motion term. We assume that a set of 2D points in the texture-map image Sc =
{u1, . . . ,uS} are putatively matched to each input image. Details for how this is done for our
experimental datasets are given in §4. We denote the matching position of the jth texture-
map point in image t by q j

t ∈ R2. In general not all points will have matches due to self
and/or external occlusions or feature detection failures. We represent this with the indicator
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matrix M ∈ {0,1}S×N where M( j, t) = 1 means that the jth point has a match in image t and
M( j, t) = 0 otherwise. We also assume there may be a small fraction of mis-matches due to
ambiguous texture regions or other factors, which we handle by an M-estimator. The motion
term robustly encourages the texture-map points to project to their matches and is given by:

Cmotion(xt ;Sc,M), ∑
u j∈Sc

M( j, t)ρ(π ◦ f (u j;xt)−q j). (3)

The boundary term. This constraint is based on the boundary term in [8] and works for
surfaces with disc topology. It is used to encourage the surface’s boundary to project closely
to image edges. We discretize the boundary to obtain a set B , {uk∈[1,Q]} of Q boundary
points defined on the texture-map image. For each input image we define an boundariness
map Bt , exp(−|∇It |/σ) where ∇I is the gradient of I and σ is the bandwidth. The
boundary term is defined as follows:

Cbound(xt ;Bt), ∑
u j∈B

ρ (Bt(π ◦ f (u j;xt)) , (4)

where an M-estimator is used to handle the fact that sometimes there may be little contrast
difference between the surface and background structures.

Deformation priors. For the isometric cost (Ciso), we use a standard definition which pe-
nalises deviation of the template mesh’s edges between the rest and deformed positions [10].
This is an appropriate physical constraint for many types of surfaces including plastics, cloths
and paper, and strongly constrains deformation. We circumvent noise in the shading term
using a robust smoothing regularizer Csmooth based on [8]. This uses the thin-plate energy,
and encourages smoothness while also permitting high bending at creased regions:

Csmooth(xt), ∑
i∈[1,M]

ρ
(

∂ 2

∂u2 f (ui;xt)

)
, (5)

where ui denotes the 2D position of the ith vertex in the texture-map image. Note that most
previous regularizers used in SfT cannot achieve this because they penalize surface bending
with an `2 norm, which cannot handle sharp creases.

3 Solution
The integrated cost function C is large scale (depending on the mesh density and number of
views there may be hundreds of thousands of unknowns), and it is highly non-linear which
makes it challenging to solve. We present a solution using a fast cascaded initialization
strategy followed by iterative gradient-based numerical optimization. A schematic of the
whole process is illustrated in figure 1. Note that the problem always has a global photomet-
ric scale ambiguity between albedos, camera response and illumination strength because of
their trilinear product in Cshade. This can be fixed by arbitrarily setting β1 = α1 = 1.

3.1 Initialization
We propose a cascaded initialization strategy shown in Figure 1. This works by successively
introducing the motion then boundary terms to obtain an initial estimate for the deformation
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parameters. Next the illumination and camera response parameters are estimated through
a robust model-sampling based approach. This leverages the fact that at smooth surface
regions, deformation can usually be estimated well at point correspondences without needing
any boundary or shading terms. Given deformations at the correspondences, we initialize
the photometric parameters by inverting the shading equation using pixel intensities and
the estimated surface normals around each correspondence. At the final stage the albedo
texture-map is initialized by first segmenting the intensity texture-map through an intrinsic
image decomposition, and then estimating the albedo values for each segment by inverting
the shading equation using the deformation, illumination and camera response estimates.

Initializing deformation. We use an existing global method to estimate {xt} from point
correspondences [3]. Because global methods such as [3] relax the isometric constraint (in
[3] it is done using non-holonomic partial differential equations), the solutions can usually
be improved by iterative non-linear optimization. We perform this by iteratively optimizing
our cost function with the non-motion data term weights (λshade and λbound) set to zero,
using Gauss-Newton iterations and backtracking line-search. Note that because the shading
term is not used xt can be optimized independently for each image and in parallel. We then
improve the initial solution at regions far from any point correspondences by introducing
the boundary term into the cost function. This is again done with Gauss-Newton iterations
and for each image independently. To improve convergence we construct Bt using an image
pyramid (we found that three octaves provide good convergence), and sequentially optimize
with each pyramid level until convergence.

Initializing illumination and camera responses. Using the initial deformation estimates,
we first estimate the surface normal for each of the texture-map points in Sc. These normals
are given in 3D camera coordinates and denoted by n j

t , with t being the image index and j
being the point index. For each point in Sc we also model the average albedo within a small
square window (in our experiments we use 11×11 windows), which we denote by a j ∈ R.
Recall that because we do not yet know the albedo texture-map, we do not yet know a j. We
use I j

t ∈ R to denote the average pixel intensity within the local window in the tth image.
Our goal is to estimate the illumination vector l, the camera response terms {βt} and the
albedo values {a j} by inverting the Lambertian shading equation βt a j r(n j

t ; l) = I j
t . This is

a hard non-convex inverse problem. It can be greatly simplified if {βt} is known, because
with spherical harmonic models r is linear in l, so it becomes linear by dividing through
by a j. In some cases {βt} can be estimated from EXIF tags. In other cases, if the image
background does not change between images we can approximate {βt} by taking the ratio of
pixel intensities in the background between different images. When neither is possible, we
can make a different assumption: that the camera response terms are roughly similar in a few
of the images, but we do not know which ones a priori. We then can tackle the problem with
random sample consensus. To do this we require a low dimensional illumination model, so
we use first-order spherical harmonics (with 4 dimensions). We will first describe how the
unknown parameters are computed from a minimal sample of a single texture-map point and
4 images. We will then describe how this fits into a RANSAC framework. Given a single
texture-map point j and 4 images where βt is assumed constant, we solve l up to scale with an
exact linear system (recall that the scale is never recoverable but it is not actually important
to us). Given l, each correspondence is then used to estimate βt by taking intensity ratios
I j
t /I j

1 . Recall that β1 = 1 (to fix the photometric scale ambiguity), so after rearranging we
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Figure 1: Schematic of our approach to optimize the cost function C.

have βt = I j
t r(n j

1; l)/I j
1r(n j

t ; l). Because each texture-map point produces a value for βt , we
compute βt robustly by taking the median across all texture-map points. We then compute a j.
Each image provides an estimate with a j = I j

t /(βt r(n j
t ; l)), so a robust estimate is computed

by taking the median across the images.
The second component for RANSAC is to validate the parameters through consensus.

We do this by computing the number of point matches where the shading equation is sat-
isfied up to noise: |βt a j r(n j

t ; l)− I j
t | ≤ τ . This requires an acceptance tolerance τ and in

all experiments we use τ = 0.04. The third component is the random selection, which was
done by first randomly selecting the texture-map point from Sc (with uniform probability),
then selecting four images where it had a match (with uniform probability). We terminated
RANSAC if either 50% consensus was reached or an iteration limit L = 20,000 iterations
had passed. On a standard Intel i7 desktop workstation L = 20,000 takes a few seconds to
reach wit sub-optimal Matlab code. The choice of L depends on the likelihood of drawing 4
images with approximately the same camera response, which is difficult to know a priori.

Initializing albedos. Recall that we assume the surface albedos are piecewise constant.
We first perform an intensity-based segmentation of the template’s texture-map using an
intrinsic image decomposition method [2] to obtain the reflectance image. We cluster the
reflectance image into piecewise constant albedos by using the Mean Shift algorithm [7] and
threshold the pixels number of each region to remove the textured regions. This is designed
to be an oversegmentation, and within each segment we assume the albedo is constant. Thus
if there are K segments, then the albedo set {α1, . . .αK} has size K. For each segment,
we estimate its corresponding albedo by optimizing Cshade, using only the texture-map T
and the photometrically-calibrated texture-map A pixels contained within the segment. To
improve convergence, we also use an image pyramid (three octaves such as for the boundary
constraint) of blurred irradiance images. For convex M-estimators such as the (`1-`2) M-
estimator, this is a convex problem that can be solved globally. Note that this initialization
corresponds to transform the texture-map T into the photometrically-calibrated texture-map
A and is based on Lambertian surface assumption. Other reflectance models will require to
estimate extra-parameters or maybe to change the initialization process.

3.2 Refinement

Having initialized we refine C using Gauss-Newton iterations with line-search. For opti-
mizing illumination we either keep to the first-order spherical harmonics model or switch
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to the second-order model (we present results for both cases). Note that selecting the best
illumination model is non-trivial and we leave this to future work. Unlike the initialization
process, the deformation parameters xt are all linked in the optimization through the shading
term. Thus the problem size during refinement grows with the number of views. Because we
use a triangulated mesh parametrization, all constraints are sparse with respect to xt . There-
fore each Gauss-Newton iteration requires solving a large sparse linear system. We have
found that for dense meshes with vertices of order O(104) one can solve this directly with
sparse Cholesky in reasonable time with up to ten views (typically done in under a few min-
utes in Matlab on a desktop PC). For larger meshes and more views, direct solvers become
impractical and one must resort to iterative solvers such as conjugate gradient.

4 Experimental Results
Method comparison. We evaluated our method with three real-world datasets which mostly
respect the Lambertian assumption. These exhibit complex non-smooth deformations with-
out any a priori photometric calibration, so cannot be handled by SfS methods nor previous
methods combining shading and SfT [11, 13, 20] (code for these methods is not publically
available). We compared with four competitive SfT methods with publically available code
[1, 3, 14, 17], denoted respectively by ReD12, ReJ14, MDH09 and LM16. We evaluated
our method in five cases to fairly assess the benefits of using shading. The first two are with a
first-order spherical harmonic light model which is either calibrated a priori or uncalibrated,
denoted by DaK and DaU respectively. The second two are with a second-order spherical
harmonic light model that is either calibrated a priori or uncalibrated, denoted by Sh9K and
Sh9U. The fifth is when shading is omitted by assigning λshade = 0, denoted by NoS.

Datasets. We computed very high quality ground truth surfaces with sub-millimeter accu-
racy using a structured-light 3D scanner [6]. This has considerably higher precision than is
used in previous SfT method, which mostly use the Microsoft Kinect. Images were captured
by a 1288×964 px Point Grey camera [16]. We computed the illumination calibration using
multiple images of a MacBeth chart. We have tested with three datasets: floral paper (8 im-
ages and 20 manual correspondences), shown in Figure 3, rows n◦1 and n◦2, paper fortune
teller (4 images and 24 manual correspondences), shown in Figure 3, rows n◦3 and n◦4 , and
floral video (8 images and 1000 correspondences), shown in Figure 3, row n◦5. For floral
video, 8 frames were extracted from a one minute video (uniformly sampled over time), and
correspondences were generated with a dense point tracking covering the textured regions.

For each dataset, a template was constructed using a grid of 100× 100 mesh vertices
(we found that this number of points is sufficient to accurately reconstruct creases). This
was texture-mapped using a photograph of the template in an undeformed rest state. For all
methods we manually set their free parameters to achieve the best performance on all datasets
(for our method these are the weight terms in C). In our method, we found that respectively
the (`1-`2) M-estimator for motion, boundary and smoothing terms and Huber M-estimator
for shading term give good reconstructions. We found that using shading in half of the
texture-map pixels gives good reconstructions. The weights of the different constraint are
normalized (λmotion by the number of correspondences, λbound by the number of boundary
points, λshade by the number of shading points, λiso by the number of edges and λsmooth
by the area of the surface) and set to λmotion = 4.1667, λbound = 0.0017, λiso = 0.6667,
λsmooth = 1.6667 e−14 and the extra-parameter of Huber M-estimator for shading constraint
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kshade = 1 e−3. To measure accuracy we used four metrics: (i) the depth error over the entire
surface (in %), (ii) the normal error over the entire surface (in degrees), (iii) the depth error
at regions near to surface creases (to within approximately 10 mm of a crease), and (iv) the
normal error at regions near to surface creases.

Figure 2: Numerical results for the three datasets. First row: floral paper dataset. Second
row: paper fortune teller dataset. We indicate by a green rectangle the method which pro-
duces the lowest median value. Third row: recovering the camera response βt for floral
paper and paper fortune teller datasets. Best viewed in colour.

Results. For the three datasets, we present in figure 3 the 3D reconstructions produced
by all the methods. ReD12, ReJ14 and LM16 produce smooth surfaces and do not recon-
struct the creases because these methods interpolate the surface between correspondences.
MDH09 forms non-smooth deformations but not in the good regions. The reason is that the
reconstructed creases are a by-product of the inextensibility constraint used in [17] which
is a relaxation of the isometry constraint. We observe that NoS succeeds to create creases
when creases are revealed by the surface boundaries. However, these reconstructed folds are
not sharp enough and the creases which cannot be guessed from the boundaries are not re-
constructed, as the paper fortune teller in figure 3 illustrates. Our method, Sh9K and Sh9U,
produces significantly good results compared to the state-of-the-art methods: the creases are
well registered and reconstructed. We note that the rendered solutions of DaK and DaU
are similar to the ones of Sh9K and Sh9U. Figure 2 shows the shape error of the compared
methods for one input image and for the floral paper and paper fortune teller datasets. Our
methods, DaK, DaU, Sh9K and Sh9U, produce the best precision on 3D errors and nor-
mal errors. In particular, we note that the shading improves notably the normals error. The
numerical results are coherent with the renderings in figure 3. We note that using second-
order spherical harmonics, Sh9K and Sh9U, improves lightly the reconstructions since there
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are more variables which gives more degrees of freedom for the minimization of the cost
function Eq.(1). In figure 2, we also show that we recover the camera responses βt and the
recovered values are similar in the four versions of our method. We show also a qualitative
result with the floral video, where we can note the shading contribution to reveal the crease.

Texture map

Input image

Ground truth

ReD12

Sh9K

ReJ14 MDH09

Sh9U

LM16

NoS

Texture map

Input image

Ground truth

ReD12

Sh9K

ReJ14 MDH09

Sh9U

LM16

NoS

Input image Sh9U NoS

Batch input images

Batch input images

Figure 3: Renders of results. Rows n◦1 and n◦2: input image n◦5 of the floral plane dataset.
Rows n◦3 and n◦4: input image n◦4 of the paper fortune teller dataset. Rows n◦5: input
image n◦8 of the floral video dataset.

5 Conclusion
We have presented an integrated approach to reconstruct deformable surfaces from 2D im-
ages using a 3D template, shading and motion constraints. We have shown that with our
approach it is possible to reconstruct complex non-smooth deformations without any a pri-
ori photometric calibration, which was not possible with previous methods in SfT or SfS. In
future works, we will investigate the impact of different image transforms, such as steerable
filters, on convergence. We also aim to extend the approach to analyse degenerate scenes and
to handle shadows, non-Lambertian reflectance, self-occlusions, surfaces which can signifi-
cantly stretch as they deform and more real world applications such as endoscopic images.

Acknowledgements. This research has received funding the EU’s FP7 through the ERC
research grant 307483 FLEXABLE and from Almerys Corporation.



BMVC 2016: SHAPE-FROM-TEMPLATE-AND-SHADING OF COMPLEX DEFORMATIONS 11

References
[1] A. Bartoli, Y. Gérard, F. Chadebecq, T. Collins, and D. Pizarro. Shape-from-Template.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(10):2099–2118,
2015.

[2] S. Bell, K. Bala, and N. Snavely. Intrinsic Images in the Wild. ACM Trans. on Graphics
(SIGGRAPH), 33(4), 2014.

[3] A. Chhatkuli, D. Pizarro, A. Bartoli, and T. Collins. A Stable Analytical Framework for
Isometric Shape-from-Template by Surface Integration. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2016.

[4] T. Collins and A. Bartoli. Realtime Shape-from-Template: System and Applications.
In International Symposium on Mixed and Augmented Reality, 2015.

[5] T. Collins, P. Mesejo, and A. Bartoli. An Analysis of Errors in Graph-Based Keypoint
Matching and Proposed Solutions. In European Conference on Computer Vision, 2014.

[6] David 3D Scanner. http://www.david-3d.com/en/products/david4,
2014.

[7] K. Fukunaga and L. Hostetler. The Estimation of the Gradient of a Density Function,
with Applications in Pattern Recognition. IEEE Transactions on Information Theory,
21(1):32–40, Jan 1975.

[8] M. Gallardo, T. Collins, and A. Bartoli. Can we Jointly Register and Reconstruct
Creased Surfaces by Shape-from-Template Accurately? In European Conference on
Computer Vision, 2016.

[9] B. K.P. Horn. Shape from Shading: A Method for Obtainig the Shape of a Smooth
Shape of a Smooth Opaque Object from One View. Technical report, Cambridge, MA,
USA, 1970.
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