
Factorized Binary Codes for Large-Scale Nearest Neighbor Search

Frederick Tung
ftung@cs.ubc.ca

James J. Little
little@cs.ubc.ca

Department of Computer Science
University of British Columbia
Vancouver, Canada

Nearest neighbor search is a ubiquitous problem
in computer vision. Given a previously unseen
query point q ∈ Rd , we seek its closest matches
in a database X ∈ Rn×d . One class of tech-
niques for nearest neighbor search is hashing al-
gorithms for constructing compact binary codes.
Hashing algorithms transform the original data
points into compact bit string signatures that re-
quire significantly less storage space and can be
compared quickly using bit operations.

We can think of the bits in a binary code
as the decisions of a set of hash functions or
hyperplanes, possibly in some kernelized space.
These hyperplanes are learned or generated by
the hashing algorithm. In matrix form, we have

Y = sgn(XW) (1)

where X∈Rn×d , W∈Rd×c, Y∈ {0,1}n×c, and
c is the number of hash functions, or the number
of bits in the generated binary code.

Typically, nearest neighbor search perfor-
mance improves as the number of hash functions
increases, i.e. as c increases. However, as the
number of hash functions increases, the matrix
Y of binary codes also increases in size, lead-
ing to higher storage requirements. For example,
if we wish to improve retrieval performance by
doubling the number of hash functions, we have
to store binary codes that are twice the length.

In this paper, we present a novel factorized
binary codes approach that uses an approximate
matrix factorization of the binary codes to in-
crease the number of hash functions while main-
taining the original storage requirements. Fig. 1
illustrates the factorized binary codes approach.
Given X, W, and Y as defined in Eq. (1), define
a ‘long’ code length cl > c, and form the matrix
Wl ∈ Rd×cl

, which appends (cl − c) new hash
functions to the c existing hash functions in W.
The new hash functions are generated using the
same procedure as the existing hash functions,
according to the underlying hashing algorithm.
The augmented matrix Wl produces ‘long’ bi-
nary codes Yl ∈ {0,1}n×cl

. We approximate Yl

X
W

n

d

d

c

Y
{0,1}

c

sgn
n

Xn

d

W
l

cl

d Y
l

{0,1}

cl

sgn
n ≈ S

{0,1}

B {0,1}

n

clk

k

X
W

n

d

d

c

Y
{0,1}

c

sgn
n

Xn

d

W
l

cl

d Y
l

{0,1}

cl

sgn
n ≈ S

{0,1}

B {0,1}

n

clk

k

Figure 1: Graphical overview of the factorized
binary codes approach

as the Boolean product of two factor matrices S
and B, both of which are also binary:

Yl ≈ S◦B (2)

where S ∈ {0,1}n×k, B ∈ {0,1}k×cl
, ◦ denotes

the Boolean product, and k is set such that the
factor matrices require no more storage than the
original binary codes Y ∈ {0,1}n×c (in Fig. 1,
the areas highlighted in orange are the same).
Given a query q ∈ Rd , the ‘long’ binary code
yq ∈ {0,1}cl

is computed using the augmented
set of hash functions Wl and matched with the
approximate binary codes Ỹl as reconstructed
using S and B. Fig. 2 shows experimental results
on the LM+SUN dataset with 384-dimensional
Gist descriptors.

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

LM+SUN, 16 bits per data point

 

 

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

LM+SUN, 32 bits per data point

 

 

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

LM+SUN, 48 bits per data point

 

 

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

N

R
ec

al
l@

N

LM+SUN, 32 bits per data point

 

 

Factorized LSH
LSH
Factorized SKLSH
SKLSH
Factorized KLSH
KLSH
Factorized LR−KLSH
LR−KLSH

Figure 2: Experimental results on LM+SUN


