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Abstract

We focus on a novel loglet-SIFT descriptor for the parts representation in the De-
formable Part Models (DPM). We manipulate the feature scales in the Fourier domain
and decompose the image into multi-scale oriented gradient components for computing
SIFT. The scale selection is controlled explicitly by tiling Log-wavelet functions (loglets)
on the spectrum. Then oriented gradients are obtained by adding imaginary odd parts to
the loglets, converting them into differential filters. Coherent feature scales and domain
sizes are further generated by spectrum cropping. Our loglet gradient filters are shown
to compare favourably against spatial differential operators, and have a straightforward
and efficient implementation. We present experiments to validate the performance of the
loglet-SIFT descriptor which show it to improve the DPM using a supervised descent
method by a significant margin.

1 Introduction
Deformable part models (DPMs) have emerged as the leading approach for accurate land-
mark detection in applications such as face alignment. A DPM describes an object by local
parts with a shape capturing the spatial relationships among parts. The facial landmark
fitting is conducted by local feature searching followed by a shape regularisation. The per-
formance has therefore been continually improved by employing part descriptors [16, 23]
as well as shape modelling [1, 24] and fitting algorithms [15, 22, 23]. Part descriptors seek
a representation of local structures which preserves intrinsic properties and discriminative
information, while exhibiting invariance to changes such as illumination, scale, and varia-
tions in appearance across instances. The most successful part descriptors in DPMs are those
based on oriented gradients such as SIFT [13]. The power of SIFT lies in its robustness to
illumination and noise through neighbourhood pooling, and its invariance to scale achieved
by salient scale selection. When SIFT descriptors are used as part "experts" in DPMs, e.g.,
in [22, 23, 24], the scale is selected by assigning a patch size without salience detection,
therefore salient local features may not be captured. In this paper we focus on capturing
wider scale ranges, so preserving richer information in SIFT descriptors. We propose multi-
scale filter banks designed directly in the Fourier domain which are complementary in scale.
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Figure 1: Overview of extracting a loglet-SIFT part descriptor.

Logarithmic wavelets (loglets) are chosen as the scale selection functions because of their
superior signal processing properties [11]. Each resultant gradient map represents features at
a certain scale, on which the SIFT is calculated, see an overview in Fig. 1. The new feature
descriptor combines the pooling power of SIFT and scale selection of loglets and is therefore
termed loglet-SIFT (L-SIFT).

Several original contributions are included in the proposed descriptor, namely: (i) We
design differential filters directly in the Fourier domain with explicit scale selection; (ii) A
high pass gradient filter is generated by accumulating a group of adjacent loglets, which
achieves a uniform coverage towards the Nyquist frequency and is able to preserve the
sharpest gradients without aliasing; (iii) Coherent feature scales and domain sizes are im-
plemented efficiently by cropping the Fourier spectrum, which offers a more comprehensive
feature descriptor, at a low computational burden.

We integrate the L-SIFT descriptor into a DPM driven by a supervised descent method
(SDM) [23] and validate its performance in the face alignment scenario. We compare the
performance of our Fourier domain designed filters with spatially-designed filters, and com-
pare L-SIFT with conventional SIFT descriptors on popular face datasets. We further present
the comparison against several state-of-the-art methods on two popular datasets: HELEN and
300-W. Experimental results show that L-SIFT as a part descriptor improves the performance
of the DPM by a significant margin. The combined L-SIFT descriptor and SDM fitting al-
gorithm achieves state-of-the-art performance on HELEN and 300-W common dataset, and
comparable performance on the 300-W challenging dataset.

2 Related work

2.1 Multi-scale SIFT descriptors
The advantages of SIFT is its invariance to scale and illumination. However a single scale
descriptor may lead to poor performance when the scale is not accurately detected [10].
In order to reduce the sensitivity to scale changes, multi-scale descriptors are proposed in
feature matching scenario. For example in [19], the local feature is described with SIFT at
different levels of detail within the same domain size. In [10], a set of SIFTs at multiple
scales are combined for better matching performance, and in [6], a pooling across adjacent
domain sizes is performed. Despite the improvement by multi-scale descriptors in feature
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matching applications, the computational burden is the main obstacle when adopting them
for DPMs. For example in Domain-Size Pooling (DSP) [6], scales are densely sampled and
pooled (at 12 intervals in one octave) in order to marginalise the scale changes, and the
computation is proportional to the number of scales. We show that pooling across adjacent
scales can be approximated in the Fourier domain as filter accumulation, the implementation
of which is efficient irrespective to the number of scales employed.

2.2 Wavelets

The idea of designing and tiling filters in the Fourier domain has led to efficient decomposi-
tion of local structures at multiple resolutions and orientations, e.g., steerable pyramids [20],
Gabor filters [9, 14, 17], log-Gabor filters [7, 8], curvelets [21], contourlets [5], loglets [11],
to name but a few. A Gabor function is a complex oscillation multiplied by a Gaussian en-
velope and in the Fourier domain manifests as a Gaussian function shifted away from the
origin. A log-Gabor filter is a Gaussian on a logarithmic frequency scale, which has a wider
bandwidth towards the higher frequencies and leads to a compact form under scaling trans-
formations when compared with Gabor filters. A generalisation to the log-Gabor function is
the loglet, as proposed by Knutsson [11], with enhanced properties such as a uniform cov-
erage of the spectrum and an infinite number of vanishing moments (smoothness). Loglets
have invariance to illumination, but because they are invariant also to sample shift they suffer
less distortion caused by the limited resolution of discrete images.

We show how loglets can be converted to differential filters to generate oriented gradi-
ents with explicit scale selection, based on the fact that all differential filters take the form of
imaginary odd-windows in the Fourier space. We then design a bundle of loglets filters hav-
ing a large bandwidth and covering the spectrum uniformly towards the maximum frequency,
therefore the resultant gradient map preserves greater textural details than one generated by
spatial filters. Moreover, we incorporate additional low pass filters for capturing informa-
tion from larger scale image variation. Coherent larger domain sizes are chosen to contain
these features and together they give a more comprehensive description of the local features.
Our idea differs from previous wavelets-based methods in that our wavelets are designed as
optimal gradient filters (imaginary odd filters) with explicit scale selection, and are further
integrated into a feature descriptor such as SIFT.

3 Method

In this section we detail how to generate loglet-SIFT part descriptors for DPMs.

3.1 Feature scales

We start by decomposing an image into multiple channels with each preserving structures
at certain scales. Describing the spectrum of an image in polar coordinates centred at the
zero frequency, a frequency coordinate can be denoted by u = [ρ,θ ]. The radius ρ actually
represents a scale axis with larger scale (lower frequency) being closer to the origin. There-
fore the scales can be decomposed and selected by arranging wavelets along the radius. We
choose the loglets [11] as the basis functions.
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Figure 2: Filters in the Fourier domain. (a) A loglet function. (b) A loglet filterbank. Filters
at higher resolution (red dashed) are accumulated to form the first scale filter (red solid).
Additional lower scale filters are shown in blue. The x coordinate, which is the radius of
the polar coordinate, becomes the scale dimension. The gray dashed-line indicates the sum-
mation of all the filters, which covers the pass-spectrum uniformly. The lines at the bottom
show that each filter covers octaves of the lower frequency range. (c) The 2D high pass filter.
(d) The first band pass filter. The checker-board area indicates the discarded frequencies.

A loglet function is defined by,

W(u;s)=erf
(
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which is a band pass filter, see Fig. 2(a). erf is an error function equals twice the integral
of a normalised gaussian function. α controls the radial bandwidth, s is an integer defining
the scale of the filter, and β > 1 sets the relative ratio of adjacent scales – set to two for one
octave intervals. ρ0 is the peak radial frequency of the filter with scale s = 0.

To preserve sharp (small scale) textures of an image, the optimal filter should cover the
higher frequency components. Note that a single filter is band pass, so we need to accumulate
a group of filters successively having one-octave higher central frequencies,

W(1) = ∑
s=0,−1,...

W(u;s) (2)

This achieves an even coverage towards the highest frequency benefiting from the unifor-
mity property of loglets, see the red curve in Fig. 2(b). The resultant 2D filter is shown in
Fig. 2(c). The filter accumulation enables a much larger radial bandwidth making it insensi-
tive to scale changes. It is worth noting that the accumulation process is similar to the scale
pooling used by DSP [6], where local features across adjacent spatial scales are accumulated.
The reason behind the better performance of DSP is that it marginalises the feature scales,
which corresponds to a wider coverage of the frequency range. This is done in our approach
explicitly with much lower computation burden. We prove the equivalence of Fourier filter
accumulation and spatial scale pooling under certain approximations in Appendix A in the
supplementary materials.

To obtain a more comprehensive description, we extract local features at additional larger
spatial scales by using filters covering the complementary lower frequency range,

W(s)(u) =W(u;s−1) (3)

Two adjacent larger scale filters at one octave intervals are shown in Fig. 2(b) as blue curves.
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As the image filtering can be implemented in the Fourier domain by multiplication, the
filters can be efficiently applied in the standard way,

I(s) = F−1(I ·W(s)), s = {1,2, ...}, (4)

in which F represents the Fourier Transform and I the spectrum of the image I. The image
is thus decomposed into multiple channels {I(s)}.

3.2 Domain sizes
Given a fiducial landmark, local patches can be extracted from the image channels to obtain
a multi-scale description. Larger scale textures should be described at coherently larger
domain sizes and lower resolutions. We show that this is evident in the Fourier domain and
can be achieved straightforwardly.

Note in Fig. 2(b) that the two larger scale filters attenuate towards high frequency and
the filter magnitude beyond π/2 and π/4 is almost zero, which means little or no frequency
higher than these values is preserved in the subband channels. Therefore we can cut off these
areas of the spectrum, which results in an efficient image downsampling without information
loss or aliasing effect.1 With the cropping process, equation (4) becomes,

I(s) = F−1(I(s) ·W(s)),s = {1,2, ...}, (5)

in which I(s) is the cropped spectrum centred at the low frequency with 1/2(s−1) size of
the whole spectrum, W(s) is the filter of same size as I(s), see Fig. 1(c). As a result, the
resolution of the image channels is reduced by 2s at scale s and a subband image pyramid is
obtained, see an example in Fig. 3. Note that the lowest frequency component is not covered
in any of these channels as it represents the slowly varying, local mean-level containing
mostly the illumination information.

At a given landmark, local patches of the same size are extracted from each of the chan-
nels, giving a multi-scale feature description (Fig. 1(e)). Although of same size in pixels,
each patch represents twice the domain size and preserves one octave lower frequency com-
ponents compared with its previous level. In this way a coherence between the domain size
and the feature scale is achieved and the Wavelet Feature Pyramid (WFP) built (Fig. 1(f)).

Figure 3: (a) The original image. (b)(c)(d) Pyramid of multi-scale channels with increasing
scales and reducing dimensions. (e) Summation of the three channels showing the image
information captured. Note that the illumination (low varying components) is suppressed as
the lowest frequency band of the spectrum is discarded.

1Spectrum cropping as image downsampling is further explained in Appendix B in the supplementary materials.
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3.3 Orientations

Figure 4: Filters in the Fourier domain. (a) The imaginary parts of the oriented filter banks.
The real parts are zero. (b) The real and imaginary part of the first scale filter after half-
pixel shift. Note that the filter is now periodically continuous. (c) For comparison, spectra
(imaginary parts) of spatially defined filters.

The WFP built on multi-scale image channels can be applied to a number of intensity-
based part descriptors in DPMs. Here we focus on integrating the scale selection property
of loglets with the pooling power of SIFT descriptors. As SIFT performs a neighbourhood
pooling on oriented gradients, we explain how to generate multi-scale gradient maps by
further decomposing the non-oriented image channels into x and y components. The easiest
way may seem to be by applying differential operators spatially on these channels. However
the fact that differential filters take the form of an imaginary anti-symmetrical window in
the Fourier domain (explained in appendix C in the supplementary materials), we can neatly
generate the oriented gradient maps directly by converting the loglets to imaginary odd-
windows.

Specifically, imaginary sinusoidal functions at orthogonal orientations are added as di-
rectional parts, decomposing the spectrum into x and y components,

W(s)
x (u) = j cos(θ) ·W(s)(u)

W(s)
y (u) = j sin(θ) ·W(s)(u)

(6)

where θ is the orientation of vector u. The oriented filters are shown in Fig. 4(a). One
problem which arises is that the high pass filter (scale one) in Fig. 4(a) has larger magnitude
around the Nyquist frequency (the margin of the Fourier spectrum), and its antisymmetri-
cal shape gives Wx(−π) =−Wx(π), therefore the spectrum is discontinuous across periods,
which results in significant aliasing. For this reason most differential filters are designed to
have zero magnitude at the boundaries to prevent aliasing, but with the penalty of losing the
highest frequency components thus sacrificing precision, see Fig. 4(c). In our differential fil-
tering, the highest frequency can be utilised without aliasing. The discontinuity is removed
by adding a phase term to the odd filters,

Wx(u) =e jux/2 · j · cos(θ) ·W(u)

Wy(u) =e juy/2 · j · sin(θ) ·W(u)
(7)

which results in a π/2 rotation in phase at one side ux = π and a −π/2 rotation at the other
side ux = −π , corresponding to a half-pixel shift in the spatial domain. The filters are now
complex-valued and with continuity across periods, i.e.,Wx(−π) =Wx(π), see Fig. 4(b).

The gradient map {I(s)x , I(s)y } along x and y directions at multiple scales can now be cal-
culated by applying the oriented filters on the spectrum prior to the inverse FFT step. The
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Figure 5: Illustrative comparison of
differential filters. Shown are the
y direction gradients produced by:
(b) [−1,0,1], (c) [−1,1] and (d) our
loglets bundle.

L-SIFT descriptor is then obtained by calculating SIFTs on the resultant multi-scale gradient
maps having equal block sizes in pixels. Because larger scale channels are down-sampled,
the L-SIFT features represent real domain size and scales at octave intervals.

3.4 Loglet SIFT as part experts in DPM
We integrate the L-SIFT descriptor with the SDM algorithm [23] for facial landmark detec-
tion. Denote the L-SIFT descriptors at all landmarks as h(I,s), with I being the image, s the
landmarks, and h(·) the L-SIFT extracting function. In order to deduce the true landmark
location s∗ given an initial estimation ŝ, we extract the descriptor h(I, ŝ) at ŝ and learn the
mapping h(I, ŝ)→ ∆s∗, in which ∆s∗ = s∗− ŝ. The direct mapping function satisfying all the
cases in the dataset is non-linear in nature and can be over-fitted. So we adopt the SDM algo-
rithm and approximate the non-linear mapping with a sequence of linear mapping {R(i),b(i)}
and landmark updating steps,

{
Mapping: ∆s(i) = R(i)h(I, ŝ(i))+b(i),
Updating: ŝ(i+1) = ŝ(i)+∆s(i).

(8)

The descriptor h(I, ŝ(i)) is extracted and updated at each iteration. Further details on SDM
can be found at [23].

4 Experiments
We report the performance of the L-SIFT descriptor on the problem of face alignment with
DPM. We compare our filters with spatial domain gradient filters, evaluate the improvement
brought to the DPM by the proposed L-SIFT descriptors, and report the performance against
state-of-the-art methods. The evaluation metric used for all the face datasets is the error
normalised by the inter-pupil distance, as proposed in [2]. The parameters of the filter banks
in all experiments are set as ρ0 = 0.3π , α = 2.

4.1 Evaluation
Comparison with other differential filters. To demonstrate the contributions of the ad-
vanced gradient filters and the multi-scale features, we first compare the single scale gradient
maps generated by our first scale filterW(1) (Fig. 4(a)) with conventional first order differen-
tial filters which can be used in SIFT descriptors, on the HELEN dataset with 68 landmarks
annotated by the iBUG group. We show an example of a gradient map generated by these
filters in Fig. 5. We can see that the proposed filter better preserves sharper local structures.
The SIFTs are calculated on these gradients and used as the part descriptors in SDM. The
results are given in Table 1. The result of the single scale filterW(1) shows that simply re-
placing the conventional gradient map with the one by our filter improves the performance.
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We believe this benefits from the superior properties of the loglets over spatial-designed fil-
ters, as well as the larger bandwidth achieved by the filter accumulation. We further evaluate
the performance of the proposed multi-scale L-SIFT descriptor with coherent feature scales
and domain sizes. The result in Table. 1 shows an additional significant improvement.

Filters [-1 0 1] [-1 1] Sobel Prewitt W(1) L-SIFT

Error 6.05 6.24 5.93 5.92 5.72 5.21

Table 1: Comparison of SIFT built on spatial filters and our filters, on Helen (68) dataset

For efficiency purposes, the filter banks can be pre-calculated and stored. The most ex-
pensive computation for generating the feature is computing the gradient maps by applying
filter banks in the Fourier domain. For the single level feature, there is no additional compu-
tation comparing to a conventional SIFT based on a spatial defined operators. For a feature
pyramid with s levels, the computation includes a Fourier Transform, s element-wise matrix
products and inverse Fourier Transforms, both with reduced dimensions. This computation
only need to be performed once before iteratively fitting the DPM to an image. Our MAT-
LAB implementation for 3-scale features takes 9.7 ms on an image of size 400×400 using a
3.2GHz quad-core machine.

Figure 6: Improvement brought to the SDM by L-SIFT on: (a) Helen (194 landmarks), (b)
Helen (68 landmarks), (c) LFPW (68 landmarks). Deshed line: SDM with SIFT; Solid line:
SDM with L-SIFT.

Helen (194) Helen(68) LFPW(68)
SDM(SIFT) 5.85 6.05 5.32
SDM(L-SIFT) 5.30 5.21 4.90

Improvement 9.4% 13.9% 7.7%

Table 2: Average error of landmark fitting.

Improvement brought to the SDM.
We evaluate the improvement brought
to the SDM by the L-SIFT descriptor
on several datasets including the orig-
inal HELEN [12] annotated with 194
landmarks, and the HELEN and LFPW
dataset annotated by iBUG group using
68 landmarks. The results are shown in
Fig. 6 and summarised in Table 2. We can see an improvement brought to the SDM in all
datasets.

4.2 Comparison with state of the art
We compare our method with state-of-art benchmarks on the HELEN (194 points) and 300-
W datasets (68 points) [18]. 300-W is created from existing datasets including LFPW, AFW,
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Figure 7: Qualitative results from HELEN (top row) and 300-W challenging dataset (bottom
row). The SDM with L-SIFT descriptors is compared against the one with SIFT. Green
points show the ground truth, and the red points the fitting results.

Method RCPR[3] ESR[4] LBF fast[16] LBF[16] SDM(SIFT)[23] SDM(L-SIFT)

Error 6.50 5.70 5.80 5.41 5.85 5.30

Table 3: Average error of methods compared on HELEN dataset

HELEN, XM2VTS and the new iBUG dataset. We follow the parameter settings given
in [16]. The training set consists of AFW, the training set of LFPW and the training set of
HELEN. The testing set is divided into a ‘challenging’ subset consisting of iBUG data and
a ‘common’ subset consisting of the testing sets from HELEN and LFPW. The results are
reported in table 3 and 4. For comparison with other methods,we list the original results in
the literature.

On the HELEN dataset, the improvement by the Fourier domain designed gradient filters
is more significant and the combined SDM+L-SIFT algorithm outperforms the state-of-the-
art methods. On the iBUG 300-W dataset, the combined algorithm gives best results in the
common subset. Although it is not as precise in the challenging subset mainly due to the
large pose variations of the faces, it still improves the performance of the SDM by a useful
margin. We present qualitative results on particularly challenging cases in Fig. 7 evaluating
the improvement to the SDM algorithm. The results show that our feature descriptors yield
better fitting performance especially on images with poor illumination or greater noise.
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Method Common Subset Challenging Subset

ESR[4] 5.28 17.00
LBF fast[16] 5.38 15.50
LBF[16] 4.95 11.98
SDM(SIFT) [23] 5.60 15.40
SDM(L-SIFT) 4.91 13.49

Table 4: Average error of methods compared on 300-W dataset

5 Conclusions
This paper presents a part descriptor combining loglets and SIFT. The uniform coverage of
the highest frequency gives no resolution loss and preserves the sharpest textures. Additional
low frequency components are extracted, with coherently larger domain sizes achieved by
cropping the Fourier spectrum, resulting in a more comprehensive feature description.

The combination of loglets and SIFT can be interpreted as an enhancement to a number
of invariances, i.e, the invariance to illumination by the local pooling of SIFT and the sup-
pression of slow varying mean level by the wavelets, as well as the invariances to noise by
SIFT, and to sample shift by loglets. These properties improve the robustness of the descrip-
tor to extrinsic variations. The proposed L-SIFT can be readily integrated in other gradient
and SIFT based Deformable Part Models. Further work includes validating the proposed L-
SIFT in computer vision tasks such as feature detection and matching. We provide a public
domain version of our loglets filters and a L-SIFT toolbox for the research use, which will
be made available at https://sites.google.com/site/logletsift/.
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