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Abstract
This paper introduces SDF-TAR: a real-time SLAM system based on volumetric reg-

istration in RGB-D data. While the camera is tracked online on the GPU, the most re-
cently estimated poses are jointly refined on the CPU. We perform registration by align-
ing the data in limited-extent volumes anchored at salient 3D locations. This strategy
permits efficient tracking on the GPU. Furthermore, the small memory load of the partial
volumes allows for pose refinement to be done concurrently on the CPU. This refinement
is performed over batches of a fixed number of frames, which are jointly optimized until
the next batch becomes available. Thus drift is reduced during online operation, elimi-
nating the need for any posterior processing. Evaluating on two public benchmarks, we
demonstrate improved rotational motion estimation and higher reconstruction precision
than related methods.

1 Introduction
Real-time Simultaneous Localization and Mapping (SLAM) is among the most pivotal com-
puter vision tasks, with many commercial applications ranging from robotic navigation and
scene reconstruction to augmented and virtual reality. Equipped with a hand-held camera,
the goal is to explore a static environment, simultaneously determining the 6 degrees-of-
freedom camera pose at every instance and reconstructing the surroundings.

A new wave of research was elicited with the advent of inexpensive RGB-D sensors,
which eliminate the inherent scale problem of monocular SLAM. The earliest works [12, 18]
relied on visual features to match 3D locations via variants of the Iterative Closest Points
(ICP) [2, 7] algorithm. Soon after, the seminal KinectFusion system [22, 34] demonstrated
the advantages of volumetric registration through the use of a continuously incremented trun-
cated signed distance field (SDF) to represent the estimated scene geometry. Various related
approaches have proposed improvements to the registration energy [4, 5, 24] and strategies
to tackle the memory limitations of regular grid SDFs, such as moving volumes [40, 48, 49],
octrees [43, 44, 52] and voxel hashing [36].

Although frame-to-growing-model registration incorporates a form of global optimiza-
tion through the cumulative SDF, it only allows for drift reduction, without a possibility to
reposition incorrectly fused geometry. Existing approaches that explicitly perform optimiza-
tion require all depth maps [53] or meshed scene fragments [8, 14, 19, 54] to be stored and
lead to lengthy posterior refinement.
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Figure 1: SDF-TAR pipeline: the relative motion between every two frames is estimated
on the GPU from p small volumes. As soon as frame Fm is tracked, the CPU refinement
module starts jointly optimizing Fm−2b+1 to Fm. In the meantime tracking resumes on Fm+1
to Fm+b. Once this new batch is ready, the refinement module switches to Fm−b+1 to Fm+b.
This strategy ensures that every pose is optimized twice for optimal geometric consistency.

One of the most acclaimed real-time monocular SLAM techniques, PTAM [28], solves
these issues by combining tracking in one thread with global map refinement in another.
Inspired by this, we propose a similar framework in RGB-D settings. The key idea is to en-
able concurrent execution by unifying the efficiency of sparse interest point alignment with
the accuracy of dense volumetric approaches. This is motivated by our recent SDF-2-SDF
registration method [41] that aligns pairs of SDF grids, resulting in more precise motion es-
timation than ICP and point-to-implicit approaches [4, 5]. While related methods, such as
KinectFusion, register over an amount of data equal to the depth map resolution, SDF-2-SDF
processes all voxels. In addition to the associated high memory requirements, the atomicity
of the underlying reduction operations prevents profiting from massive GPU parallelization,
thus restricting operation to small spaces that are insufficient for SLAM. Guided by the intu-
ition that geometry-poor locations impede registration, we propose to select a fixed number
of the most geometry-rich locations in a range image, and anchor small SDF volumes of
fixed size around them. Thus only informative data is used for registration, yielding the ac-
curacy of fully dense techniques, at a fraction of the cost. Furthermore, this strategy is more
straightforward to implement than moving volumes, octrees and voxel hashing. It enables us
to apply SDF-2-SDF registration in parallel over all volumes on the GPU, seeking a common
rigid-body motion, and to additionally perform concurrent pose refinement on the CPU, thus
minimizing drift in real-time without the need for posterior global optimizaiton.

To sum up, we propose SDF-TAR: a real-time system for parallel tracking and refinement
based on direct registration between multiple limited-extent SDFs, summarized in Figure 1.
Our contributions are: (1) a novel approach for reducing the memory footprint of volumet-
ric registration, while preserving its accuracy; and (2) a fully real-time volumetric SLAM
method which combines GPU tracking with concurrent CPU pose refinement on overlapping
batches of RGB-D frames for online drift reduction. The limited-extent volumes (LEVs) lead
to more precise tracking than state-of-the-art techniques when the dominant motion is rota-
tional, and on-par accuracy in general settings. Furthermore, we assess the drift reduction
achieved by refinement, which is also reflected in higher-fidelity reconstructions.

2 Related Work
KinectFusion [22, 34] is among the most celebrated reconstruction systems that work on
RGB-D data. It uses Curless and Levoy’s volumetric depth map fusion [10] to represent
scene geometry as a continuously updated SDF, which aids smoothing noise away. Reg-



M. SLAVCHEVA, S. ILIC: SDF-TAR 3

istration is done by rendering the SDF into a point cloud and applying point-to-plane ICP,
making it susceptible to drift under erratic motion or lack of discriminative geometry.

Point-to-implicit approaches [4, 5] seek to overcome the limitations of ICP [39] by ac-
tively using the SDF. They directly project an incoming point cloud onto the volume and min-
imize the difference to its zero-level set, yielding more precise camera motion than Kinect-
Fusion. SDF-2-SDF [41] leverages this scheme to a denser, implicit-to-implicit formulation,
whereby pairs of SDFs are directly aligned. It is used both for the frame-to-frame tracking
and subsequent global optimization, leading to improved trajectory and reconstruction pre-
cision in the context of object scanning. We propose to transfer it to SLAM scenarios, in
a fully online fashion inspired by PTAM [28]’s concurrent tracking and refinement. To this
end, the camera is tracked in real-time on the GPU, while a fixed number of already tracked
frames are jointly refined on the CPU. As there is no real-time constraint on the refinement,
it runs for as much time as the tracking module permits, i.e. until the next batch is complete.

A major limitation of regular voxel grids is their high memory requirement. It has been
tackled in multiple ways, including moving volumes [40, 48, 49], octrees [43, 44, 52], hybrid
hierarchical structures [6] and voxel hashing [24, 36]. However, methods that rely on dense
image alignment need robust techniques to disregard outliers [13, 26]. On the other hand,
methods like RGB-D SLAM [12] that detect 2D features and match them in 3D discard a
lot of useful information and require RANSAC [15] and pose graph optimization [29] to
estimate consistent trajectories. While plenty of research efforts have gone in the direction
of 3D keypoint detection [9, 16, 21, 23, 42, 46], the associated occlusions and noise currently
limit their applications to object detection, recognition and classification [1, 3, 11].

We propose a quasi-dense technique which combines the efficiency of keypoint-based
methods with the accuracy of dense schemes: we set small volumes around locations of
distinct geometry and determine a common rigid-body motion for all of them. The volumes
capture local geometry and thus grant flexibility with respect to their exact positions. The
anchor points are chosen as the locations with highest mean curvature, which is the second-
order derivative taken directly from the depth map [20], facilitating real-time performance.

Although refinement can be highly beneficial, it is often not viable for volumetric meth-
ods. Due to the high processing requirements of dense data, most existing pipelines resort to
expensive posterior optimization that can take hours [8, 14, 19, 53, 54]. On the contrary, our
refinement is applicable online, as it also works over partial volumes, while the good initial-
ization from tracking mitigates the increased demand of jointly optimizing several frames.

The sliding window bundle adjustment of Pirker et al. [38] is somewhat similar to our
idea, but its use of sparse 2D-3D correspondences requires loop closure detection and pos-
terior pose graph optimization. Whelan et al. [50] combine incremental as-rigid-as-possible
space deformation and every-frame map correction, but depend on the presence of loop
closure and add some minimal time latency as more frames are processed. Similarly, Elas-
ticFusion [51] relies on local loop closures to activate non-rigid model-to-model refinement,
without further improving the estimated trajectory. Therefore, we identify SDF-TAR as the
first pose-graph- and loop-closure-free volumetric RGB-D SLAM method that carries out
camera tracking and batch optimization in a fully online fashion.

3 SDF-TAR Pipeline
In the following we describe our partial volume scheme for reducing the memory require-
ments of regular voxel grid registration. Then we explain how the implicit-to-implicit energy
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that we introduced in SDF-2-SDF [41] is applied over these small volumes, both for tracking
and refinement, which we combine in parallel into our hybrid GPU/CPU SLAM system.

3.1 Background

Camera tracking entails estimating the 6 DoF pose at every time instance. We represent
rigid-body transformations minimally as twist coordinates from the Lie algebra se(3) of the
special Euclidean group SE(3) [31]: ξ = (u ωωω)> = (u1,u2,u3,ω1,ω2,ω3)

>, where ωωω ∈R3

denotes the rotational component and u ∈ R3 corresponds to the translation. We denote
applying this transformation to a 3D point X = (XX ,XY ,XZ)

> ∈ R3 as X(ξ ).
To estimate camera motion we register pairs of RGB-D frames, where the depth map is

denoted by D : N2→ R. It consists of the projections π(X) = x of 3D points onto the image
plane, where x = (x,y)> ∈N2 is the pixel and D(x) = XZ is the value stored in the map. The
inverse relation π−1, back-projects a pixel x to 3D coordinates X = π−1(x,D(x)).

A signed distance field (SDF) in 3D space is an implicit function φ : Ω ⊆ R3→ R that
assigns to each point X its signed distance to the closest surface location [37]: positive for
points in front of objects, and negative for points inside. Thus the surface corresponds to the
zeroth level-set crossing, which can be extracted via marching cubes or ray tracing [10, 30].

A single depth image allows to generate a discrete projective SDF from its corresponding
viewpoint. For this purpose, first the extents of the occupied volume are determined by back-
projecting all pixels. Then it is discretized into cubic voxels of predefined side length l. Any
3D point within a given voxel is assigned the same properties as its center, so we will denote
the whole voxel, and any point in it, by V ∈ R3. These properties are:

φtrue(V) = D(π(V))−VZ , (1)

φ(V) =

{
sgn(φtrue(V)) , if |φtrue(V)| ≥ δ
φtrue(V)/δ , otherwise

(2)

ω(V) =

{
1 , if φtrue(V)>−η
0 , otherwise.

(3)

We store the value φ(V), obtained from the true signed distance φtrue, scaled by a factor δ
and truncated into the interval [−1,1]. The binary weight ω(V) indicates whether the value
for a voxel is reliable, i.e. when the voxel has already been observed, or if it is in the range of
the expected object thickness η . Voxels with zero weight are discarded from computations.

For registration we use the SDF-2-SDF energy [41], which directly minimizes the per-
voxel difference of two SDFs that occupy the same volume:

ESDF(ξ ) =
1
2 ∑

voxels

(
φre f ωre f −φcur(ξ )ωcur(ξ )

)2
, (4)

where φre f is the reference SDF, generated from the identity pose, and φcur is the SDF whose
optimal camera pose ξ is currently being estimated. Voxel indices are omitted for ease of
notation, i.e. we write φre f instead of φre f (V).

ESDF is based on the intuition that, as implicit functions, SDFs densely interpolate depth
measurements throughout space. Thus both of the SDFs that are being registered steer con-
vergence towards the optimally aligned state, demonstrated by higher accuracy than ICP
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and point-to-implicit registration [41]. However, regular voxel grids are extremely memory-
intensive when used to represent large scenes. This becomes especially problematic if a fine
voxel resolution is used, as required for accurate reconstruction. Storing only the signed
distances for 5123 voxels takes 0.5 GB, and for 10243 - 4 GB. These figures further in-
crease by 25% with the storage of the weight grid. The problem soon becomes intractable as
processing a high amount of voxels also naturally entails increased runtime.

3.2 Selection of Limited-Extent Volume Locations
To circumvent this we propose an easy to implement solution that significantly reduces the
memory load. Our key idea is to select p limited-extent volumes (LEVs) Ω1, ...,Ωp of res-
olution x× y× z voxels with side length l, and carry out SDF-2-SDF registration searching
for a common rigid-body motion ξ for all of these small volumes simultaneously. In case of
SDF-2-SDF alignment of volumes occupying the full frame, the high number of voxels either
do not fit into device memory, or slow processing down due to the atomic reduction opera-
tions for accumulating each voxel’s contribution. In our strategy the limited, fixed number of
voxels permits fully exploiting the computational capabilities of the GPU. It guarantees that
memory usage will be kept constant and gives an upper bound for the processing time, letting
us select a maximum number of iterations that will always stay within real-time constraints.

While the choice of the positions of the LEVs is obviously critical, it is also natural.
Guided by the intuition that flat areas, like walls, do not contribute and even inhibit regis-
tration, we propose to anchor the SDFs at points of high curvature. Such regions are highly
distinct from their surroundings and therefore quickly lead registration to an optimal solu-
tion. We demonstrate the effectiveness of this choice in the experimental section.

Figure 2 illustrates the anchor point selection process. To minimize runtime, all oper-
ations are done directly on the depth map. Since the sensor error increases quadratically
with distance [27], we consider measurements further than 2 m unreliable and discard them.
Furthermore, RGB-D cameras are inaccurate near depth discontinuities, thus we also mask
out pixels near edges. Next, we estimate the surface normals as derivatives over the prepro-
cessed depth map, following the method of Holzer et al. [20]. Then we calculate the cur-
vature magnitude from the derivatives of the normal map. Finally, we apply non-maximum
suppression [33], so that only one high curvature point is selected within a window of size
w×w pixels. This guarantees that the volumes of the SDFs centered around these locations
will be non-overlapping. Finally, we select the p points with highest curvature values in the
non-maximum-suppressed image. If there are less than p peaks, we simply take all of them.

(a) (b) (c) (d)

Figure 2: LEV anchor point selection process. (a) Input depth map with overlayed validity
mask: locations too far away (blue) and near edges (red) are discarded. (b) Normal map. (c)
Curvature size is calculated and non-maximum suppressed to yield peaks that are sufficiently
far apart. (d) Local volumes set on the p anchor points with maximum curvature.



6 M. SLAVCHEVA, S. ILIC: SDF-TAR

3.3 Limited-Extent Volume Registration

Tracking To register a depth frame Fm+1 to frame Fm, the anchor points for the small
volumes Ωi are selected on the reference frame Fm. Then the SDFs of Fm are generated from
the identity pose and ESDF is applied as a sum over all voxels in all LEVs. The pose ξ of
Fm+1 relative to Fm is estimated iteratively by applying a first-order Taylor approximation
around the current guess ξ k, yielding a 6×6 linear system:

A = ∑
volume Ωi

i = 1..p

(
∑

voxels ∈Ωi

∇>ξ φm+1
(
ξ k)∇ξ φm+1

(
ξ k)
)
, (5)

b = ∑
volume Ωi

i = 1..p

(
∑

voxels ∈Ωi

(
φm−φm+1

(
ξ k)+∇ξ φm+1

(
ξ k)ξ k

)
∇>ξ φm+1

(
ξ k)
)
, (6)

dESDF

dξ
= Aξ −b , ξ ∗ = A−1b , ξ k+1 = ξ k +β

(
ξ ∗−ξ k) . (7)

Here ∇ξ φ is the Jacobian of a voxel center point with respect to the pose ξ , and β is the size
of the step taken towards the current optimal solution estimate ξ ∗. The binary weight factors
have been omitted in order to simplify notation. They determine whether a voxel contributes
to the sums in A and b: it does only if both ωre f and ωcur for this voxel are set to valid.

Pose Refinement Optimization is done over q≤ p LEVs, jointly in batches of 2b frames,
the first half of which have already been refined once, while the second half are the lastly
tracked ones. A weighted average φavg is generated in each partial volume over the 2b
frames and serves as reference for alignment. It is calculated following Curless and Levoy’s
scheme [10], but this is done only every f iterations in order to keep the objective fixed
meanwhile. For stability the first b/2 poses are kept fixed, while each other pose is refined
following a gradient descent scheme, resulting in a 6-element vector pose update:

dESDF

dξ
= ∑

volume Ωi
i = 1..q

(
∑

voxels ∈Ωi

(
φd (ξ )−φavg

)
∇ξ φd(ξ )

)
, d ∈ [m−2b+1, ...,m] , (8)

ξ k+1
d = ξ k

d −α
dESDF(ξ k

d )

dξ
. (9)

3.4 Parallel Tracking and Refinement

Our goal is a fully real-time SLAM method that does not entail any posterior processing.
Therefore we execute the tracking and refinement modules concurrently, as outlined in Fig-
ure 1. We allocate a separate GPU stream responsible for tracking: an incoming depth map
is transferred to device memory, pre-processed and then registered to the previous one using
the limited-extent volume scheme explained above. When b frames have been processed,
the CPU is signalled and starts the optimization module. Refinement is done in a locally
global fashion: a local batch of 2b frames is jointly globally optimized. The batch consists
of the newly tracked b poses and the b previous ones, of which the first b/2 are kept fixed
for stability and only contribute to the weighted average generation. This strategy gives a
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broader context for optimization and ensures that every frame participates in the refinement
twice, thus is geometrically consistent with frames both before and after it.

Given a trajectory estimated in this manner, a reconstruction can be generated in various
ways, among which volumetric fusion [35], carefully selected keyframe fusion [32], or point-
based fusion [25], which we favour due to its low memory load. As the particular method
is not the focus of this paper, when comparing the outputs of different pipelines we always
display results generated with the same technique, namely the incremental volumetric depth
map fusion used in PCL’s KinFu implementation1.

4 Evaluation
In this section we investigate the dependence of the performance of our system on its param-
eters, compare it to related techniques and analyze its advantages.

4.1 Computational Performance
We carried out our experiments on a PC with an Intel i7-4900MQ CPU at 2.80 GHz and an
NVIDIA Quadro K2100M GPU. Pre-processing the depth images takes 7-8 ms: transferring
the depth image to device memory, estimating the normals and calculating the curvature
size take approximately 4.5 ms in total, while the non-maximum suppression and sorting
the peaks in order of their curvature magnitude last another 3 ms. The remaining 25 ms are
entirely available for tracking, so the maximum number of iterations is set depending on the
number of SDFs. Typically 40-60 iterations are sufficient for convergence. Refinement runs
concurrently until the signal that a new batch is ready, when it switches to the new batch.

The tracking module requires 160 KB of GPU memory for p = 64 LEVs of 83 voxels
(if signed distances are stored as float and weights as uchar), totalling 2.66 MB for two
frames together with their depth maps. In addition, the refinement module over q = 8 LEVs
takes 20 KB of CPU memory for the weighted averages, and another 23.4 MB for 20 range
images. These values demonstrate the real-time capabilities of SDF-TAR, combined with its
low memory load. Note that the reported memory consumption only includes the depth maps
and SDFs used for tracking and pose refinement, but not the reconstruction, as, depending
on the goal of the application, any method of choice can be used for depth map fusion.

4.2 Parameter Study
The parameters in SDF-TAR reflect the inherent properties of the environment. While the
majority of them are fixed, some depend on the richness of the scanned geometry.

The resolution of a single SDF is 83 voxels, with side 8 mm for tracking and 4 mm
for refinement. While this finer voxel size is advantageous for more accurate refinement,
using an even smaller one is not beneficial because it becomes corrupted by sensor noise.
The δ parameter equals the voxel size, while η is twice the voxel size, as they control the
represented surface region. Independent of how many SDFs are used for tracking, only q = 8
are used for refinement, since a good initialization is available and since generating them for
a whole batch of frames on the CPU would otherwise take too much time. The batch size is
20 frames (b = 10), while the weighted average is generated on every f = 5th iteration.

1KinectFusion Implementation in the Point Cloud Library (PCL), https://github.com/
PointCloudLibrary/pcl/tree/master/gpu/kinfu.
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Figure 3: SDF-TAR parameter evaluation: influence of number of small SDFs (left) and their
anchor point selection strategy (right) on the absolute trajectory error (without refinement).

We assess the remaining parameters of SDF-TAR on three sequences of the RGB-D
benchmark [45]: fr1/xyz and fr1/rpy, which are designed for evaluating translational and
rotational motion estimation respectively, and fr1/desk which is a typical SLAM scenario
combining both kinds of motion. We evaluate the root mean squared absolute trajectory
error (ATE) proposed in the benchmark. In order to isolate the effect of the parameters on
the partial volume registration, we disable the refinement module, unless otherwise stated.

Number of Volumes We take from 20 to 150 LEVs per frame to judge the dependence of
the tracking error on their amount. The results in Figure 3 (left) show that the error is large
with a small number of volumes, and gradually decreases with more SDFs. There is quite
a broad range of values which lead to near-optimal results, typically around 60-90 SDFs.
When the amount of volumes becomes too high, the error slightly increases again. This
means that the volumes have become so many that they also cover flat regions, which inhibit
registration. Naturally, in order to keep runtime as low as possible, we advocate taking the
smallest amount of volumes that guarantees stable results, e.g. 80 SDFs per frame.

Anchor Point Selection Strategy We compare our strategy for selecting the points around
which the SDFs are centered (cf. Sec. 3.2) to two other approaches that can be applied di-
rectly on a depth map. In them the image is split into non-overlapping windows of w×w
pixels, one pixel is selected per window and projected in 3D to give the anchor point. The
uniform approach takes the center of each window, while the random strategy selects a pixel
at random. For all approaches we first preprocess the depth map, as explained, to discard in-
valid regions, and then take the same number of small volumes (the amount that gave optimal
results in the experiment above for the respective sequence). Fig. 3 (right) shows that the uni-
form strategy leads to a 4-6 times higher error than our proposal, while the random sampling
is nearly two times worse than ours. Thus our strategy clearly selects more discriminative
regions that, combined with its high speed, are more advantageous for registration.

Refinement Effect Enabling the refinement module decreased the ATE error on fr1/xyz by
only 19%, while on fr1/rpy it reduced more than 50%. Not surprisingly, on the combined
motion sequence fr1/desk the improvement was in between: 41%. We, therefore, conclude
that our refinement strategy is highly beneficial for reducing the rotational error in track-
ing. We attribute this to the small volumes that only encapsulate informative context around
salient locations. On the contrary, the motion between flat regions can only be sliding against
each other, which would inhibit the good rotational estimation.
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Method fr1/xyz fr1/rpy fr1/desk fr1/desk2 fr1/360 fr1/floor
KinFu 0.023 0.081 0.057 0.102 0.591 0.918
Bylow [4] 0.021 0.042 0.035 0.061 0.119 0.567
Canelhas [5] 0.014 - 0.033 0.230 - 0.984
SDF-TAR 0.015 0.021 0.030 0.091 0.113 0.279

Table 1: Absolute trajectory error (ATE) comparison on RGB-D benchmark [45] sequences.
Our method achieves a considerably smaller error when the dominant motion is rotational
(e.g. rpy, 360), while demonstrating comparable performance under translational motion.

Figure 4: Qualitative results of SDF-TAR: (left) examples of estimated trajectories on the
RGB-D benchmark [45]; (right) reconstructions of the objects from the CoRBS dataset [47].

Furthermore, we tried an every-frame refinement strategy, whereby we used the same
frame to weighted average registration, but only optimizing the last tracked pose. This re-
finement lead to a very slight improvement over the non-optimized trajectory. The reason
is that the energy for every-frame refinement is too similar to the tracking one, so it cannot
significantly improve the pose, while the batch refinement has multiple frames influencing
each other, resulting in better estimates. Thus we have developed a powerful strategy that
can be applied in parallel with the tracking module and significantly reduces rotational drift.

4.3 Evaluation on Public Datasets
For quantitative evaluation we use the TUM RGB-D benchmark [45], which contains multi-
ple Kinect v1 sequences with externally recorded trajectories, and the CoRBS dataset [47],
which features various Kinect v2 scans of 4 large objects, together with their sub-millimeter
precise CAD models from an external 3D scanner. We selected these real-world datasets
over synthetic ones, such as ICL-NUIM [17], as they guarantee realistic handheld scanning
scenarios and noise properties typical for RGB-D sensors.

We compare our approach to the most related systems that rely on SDFs for registration:
PCL’s KinFu and point-to-implicit methods [4, 5]. Since the CoRBS dataset was introduced
after the point-to-implicit publications, we obtain the respective results with the implemen-
tation available in ROS2 and specify it as pt-SDF-ROS.

The absolute trajectory errors in Table 1 testify that we considerably outperform related
works on sequences with dominant rotational motion, and achieve on-par accuracy on other
types of motion. We conclude that the LEVs reduce the negative influences of noise, blur and
rolling shutter effect by constraining registration to the most discriminative local regions.

To further investigate rotation, in Table 2 we evaluate the error per frame. We test on the
same sequences as [5], which is the only related work that reports RPE. As the translational
errors reflect the rotational ones [45], and as expected by our lower ATE, both error compo-
nents are typically lower for us. In particular, our rotational drift is well below 1° even on the

2sdf_tracker - ROS Wiki, http://wiki.ros.org/sdf_tracker.
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Method fr1/xyz fr1/desk fr1/desk2 fr1/floor
tr. [m] rot. [°] tr. [m] rot. [°] tr. [m] rot. [°] tr. [m] rot. [°]

Canelhas [5] 0.003 0.472 0.007 0.759 0.019 1.080 0.050 2.085
SDF-TAR 0.003 0.442 0.006 0.768 0.009 0.993 0.020 0.844

Table 2: Relative pose error (RPE) translational and rotational root-mean squared values per
frame on TUM RGB-D benchmark [45] sequences.

Method Desk Cabinet Human Car
KinFu 1.5686 1.2504 0.7105 2.9072
pt-SDF-ROS 1.3266 1.1599 0.6583 4.3870
SDF-2-SDF 1.1981 1.9836 1.7968 2.8947
SDF-TAR 0.9856 1.0552 0.7258 2.5470

Table 3: CloudCompare absolute cloud-to-model error [centimeters] on CoRBS objects [47].

color image KinFu pt-SDF-ROS SDF-TAR

Figure 5: Qualitative comparison (CoRBS/Desk): related approaches wash out fine struc-
tures due to tracking drift (marked in red regions), while the concurrent refinement of our
SDF-TAR successfully minimizes drift, yielding more detailed, higher fidelity meshes.

challenging fr1/floor, indicating again that SDF-TAR is more powerful in handling rotation.
In the CoRBS dataset we used the first sequence for each object. We noticed that the cur-

rently provided groundtruth trajectories do not always yield geometrically consistent meshes,
so, after personal communication with the authors, we decided to only evaluate the recon-
struction error. Moreover, due to synchronization issues in the Car sequences the cam-
era appears to jump back and forth between depth frames, causing all methods to perform
poorly. By limiting the volume to the object of interest, we also test full regular grid SDF-
2-SDF [41], although this is not its intended small-scale application. The CloudCompare3

results in Table 3 prove that SDF-TAR has successfully leveraged SDF-2-SDF registration to
SLAM scenarios. We achieve the smallest model error on most objects, which we attribute
to the smaller rotational drift, combined with the benefit of online refinement.

5 Conclusions
We have presented a hybrid GPU/CPU system for concurrent tracking and batch refinement.
SDF-TAR uses a volumetric registration scheme based on a novel memory reduction scheme,
which aligns multiple voxel grids representing partial SDFs anchored at locations of distinc-
tive geometry. These limited-extent volumes not only provide an easy to implement way
for keeping memory load and runtime fixed, but also lead to considerably more accurate
rotational motion estimation than related methods, as demonstrated on public datasets.

3CloudCompare - 3D Point Cloud and Mesh Processing Software, http://www.danielgm.net/cc/.
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