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In this paper, we introduce a new deformable model for image segmen-
tation, by reformulating a region based active contours energy into a
geodesic contour energy involving a Finsler metric.

Let Ω ⊂R2 be the image domain and γ : [0,1]→ Ω be a regular curve
with outward normal vector N . Given a function f : Ω → R of interest,
we consider the curve evolution scheme:

∂γ

∂τ
= f (γ)N , (1)

where τ denotes time. This curve evolution equation can be regarded as a
gradient descent, thus a minimization procedure [2], for the functional

F(γ) =
∫

K
f (x)dx, (2)

where K ⊂ Ω is the region inside the closed curve γ := ∂K. A complete
active contour energy with a curve length regularization can be defined as

E(γ) = α F(γ)+
∫ 1

0
P(γ(t))‖γ̇(t)‖dt, (3)

where P is an edge based potential function, and α > 0 is a constant.
Reformulation as Finsler Geodesic Energy: Suppose V⊥ : Ω → R2 to
be a continuously differentiable vector field defined over the domain Ω

such that V⊥ satisfies the following divergence equation:

∇ ·V⊥(x) = α f (x), ∀x ∈ Ω, (4)

where f is the first order derivative function used in (2) and ∇ ·V⊥(x) de-
notes the divergence value of a vector V⊥(x). Letting M be the counter-
clockwise rotation matrix with rotation angle θ = π/2, by divergence
theorem, the regional energy F in (2) can be expressed as

αF(γ) := α

∫
K

f (x)dx =
∫

K
∇ ·V⊥(x)dx (5)

=
∫ 1

0
〈V⊥(γ(t)),N (t)〉‖γ̇(t)‖dt (6)

=
∫ 1

0

〈
MTV⊥(γ(t)), MTN (t)‖γ̇(t)‖

〉
dt (7)

=
∫ 1

0

〈
V(γ(t)), γ̇(t)

〉
dt, (8)

where V =MTV⊥. Unit vector N is the outward normal vector of contour
γ and γ̇ is the tangent vector of γ in clockwise order. Indeed, T = MTN
is the tangent vector and

γ̇(t) = ‖γ̇(t)‖T (t) = ‖γ̇(t)‖MTN (t), ∀ t ∈ [0,1].

One can introduce a Finsler metric F : Ω×R2 → R:

F(x,u) = P(x)‖u‖+ 〈V(x),u〉, (9)

which is positive, provided one has the smallness condition [1]:

‖V(x)‖< P(x), ∀x ∈ Ω. (10)

In practice, it is difficult to satisfy the smallness condition (10). Assuming
that ∀x ∈ Ω, P(x)≥ 1, we make use of the following condition:

‖V(x)‖< min
y∈Ω

{P(y)}= 1, ∀x ∈ Ω. (11)

In view of F and (5), the energy E (3) is converted to the Finsler geodesic
energy:

L(γ) =
∫ 1

0
F(γ(t), γ̇(t))dt. (12)

Computing the vector field V⊥ and Finsler Metric F : The minimiza-
tion procedure of L (12) is solved inside a neighbourhood U instead of
the whole domain Ω. This means that we only require the vector field
V⊥ defined over U . In order to satisfy the smallness condition (10), it is
natural to select a solution to (4) minimizing an energy

min
{∫

U
‖V⊥(x)‖2 dx

}
, s.t. ∇ ·V⊥(x) = α f (x), ∀x ∈U. (13)

Despite the rich regularity for solutions to elliptic PDEs, we could not find
a result directly implying that the solution to (13) obeys the desired small-
ness condition (10). However, such a result can easily be established for
a different solution to the divergence equation (4), given by convolution
with an explicit kernel

V⊥(x) =
α

2π

∫
U

x−y
‖x−y‖2 f (y)dy.

In that case one indeed obtains using Holder’s inequality

2π

α
‖V⊥(x)‖ ≤ ‖ f‖q

(∫
U

1
‖x−y‖p dy

) 1
p

(14)

≤ ‖ f‖q

(∫
DU

1
‖x− z‖p dz

) 1
p

= η Aµ

U ‖ f‖q, (15)

where DU is a disk centered around x and with the same area AU as U .
p,q are two positive constants obeying 1/p+ 1/q = 1 and q > 2. η is
a constant and µ = 1

p − 1
2 > 0. ‖ f‖q is the Lq norm of f on U . The

condition (11) is thus satisfied when the area of U is sufficiently small.
Finsler Metric Construction: The vector field V⊥ solution to (13) de-
pends on the neighbourhood U . In order to obtain a vector field obey-
ing ‖V⊥‖∞ < 1, one choose a tubular neighbourhood U with small width
hence a small area. On the other hand, U is regarded as the search space
for the next evolutional curve. A small U may therefore make the algo-
rithm fall into undesirable local minimas of the geodesic energy L. Thus
we use a trick to solve this problem by invoking a non-linear mapping in-
creasing function T :R+ → (0,1) defined as T (x) = 1−exp(−x), ∀x > 0.
Thus the new vector field V̄ can be expressed by

V̄(x) = T (‖V⊥(x)‖)M−1V⊥(x)/‖V⊥(x)‖, ∀x ∈ Ω. (16)

where the smallness condition (11) will be immediately satisfied and M is
the counter-clockwise rotation matrix with rotation angle θ = π/2. Based
on the vector field V̄ , the Finsler metric is denoted by F̄ and the geodesic
energy L̄ is defined by (12) with F := F̄ .

The minimization of E (3) is transferred to the minimization of L̄.
Note that since in general we induce L̄ with a nonlinear mapping T , there
is in fact slight difference in the minimization problems and the results
show that our geodesic method is very efficient and robust. The non-linear
mapping T is reasonable: 1) The minimization of E in (5) is relevant to
both the directions of γ and the norm of V , i.e., minimizing E is to find
a path γ , for which the direction γ ′(t) for each t ∈ [0, 1] should be as op-
posite to V

(
γ(t)

)
as possible and the norm ‖V

(
γ(t)

)
‖ should be as large

as possible, giving the relevance between the minimization problems of
E and L̄. Introducing T will not modify both goals of the minimiza-
tion problems. 2) When the Finsler geodesics evolution scheme tends to
stabilize, one can reduce the width of tubular neighbourhood U . Thus
T (‖V‖)≈ ‖V‖ as ‖V‖ is small.
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