
KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION 1

An Octree-Based Approach towards
Efficient Variational Range Data Fusion

Wadim Kehl 1

kehl@in.tum.de

Tobias Holl 1

holl@in.tum.de

Federico Tombari 12

tombari@in.tum.de

Slobodan Ilic 13

slobodan.ilic@siemens.com

Nassir Navab 1

navab@cs.tum.edu

1 Computer-Aided Medical Procedures,
TU Munich, Germany

2 Computer Vision Lab (DISI),
University of Bologna, Italy

3 Siemens AG
Research & Technology Center
Munich, Germany

Abstract
Volume-based reconstruction is usually expensive both in terms of memory consump-

tion and runtime. Especially for sparse geometric structures, volumetric representations
produce a huge computational overhead. We present an efficient way to fuse range data
via a variational Octree-based minimization approach by taking the actual range data ge-
ometry into account. We transform the data into Octree-based truncated signed distance
fields and show how the optimization can be conducted on the newly created structures.
The main challenge is to uphold speed and a low memory footprint without sacrificing
the solutions’ accuracy during optimization. We explain how to dynamically adjust the
optimizer’s geometric structure via joining/splitting of Octree nodes and how to define
the operators. We evaluate on various datasets and outline the suitability in terms of
performance and geometric accuracy.

1 Introduction
3D object reconstruction has been the focus of computer vision for decades and is important
for many different fields including manufacturing verification, reverse engineering, rapid
prototyping or augmented reality. Recently, the introduction of time-of-flight sensing devices
as well as advances in stereo vision and especially the advent of low-cost RGB-D cameras
further widened the focus and eased the reconstruction of objects and environments.

Depending on the application the provided range maps are usually either fused into sparse
clouds or into volumetric representations. While former are usually faster to store and pro-
cess, the latter offer the advantage of straight-forwardly defining mathematical operators on
the volumes due to the their dense nature. In this paper, we conduct 3D object reconstruction
by fusing truncated signed distance fields (TSDF) via a variational optimization approach
which would usually require us to store the data in dense volumetric grids. Such a represen-
tation entails a high memory consumption and runtime complexity since each discrete voxel

c© 2016. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Pages 21.1-21.12

DOI: https://dx.doi.org/10.5244/C.30.21

https://dx.doi.org/10.5244/C.30.21

2 KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION

Figure 1: Our work deals with robust variational fusion of range scans. Given a sequence
of input frames, we optimize over Octree-structures representing transformed input TSDFs
into a common, constantly evolving Octree to finally retrieve a geometrically accurate and
smoothed meshed reconstruction.

has to be stored and also considered during operations. Furthermore, iterative optimiza-
tion schemes create constantly changing intermediate solutions and thus would require for a
dynamic spatial structure that follows the evolving implicit surface by structural updates.

Hierarchical space partitioning schemes, like kD-trees [3] or Octrees [17], can tremen-
dously increase query performance for static geometries but need to be properly updated for
dynamic changes occurring inside the volume. Obviously, employing partitioning schemes
during an optimization must be carefully designed to avoid accumulation of quantization
errors which lead to inaccurate solutions. In this work, we build our optimization around
Octrees which recursively divide up the space into eight equally-sized cubes according to
split and join rules. Octrees are established in many fields and are often used to alleviate
computational burdens. Recent work ([7, 22, 27]) uses Octrees for range data integration to
map the environment, but employs simple update rules to encompass newly seen data with-
out any optimization whatsoever. For simulation problems these partitioning structures are
usually of static auxiliary nature (e.g. accelerating point/surface look-ups, [4, 15]) and get
discarded or recomputed after each iteration.

Our novel contribution is to use an Octree as the main optimization structure instead and
we present a viable way to robustly fuse TSDFs in a variational approach, similar to [11, 25],
while dynamically adapting the Octree’s iterative structure to be faster and memory-efficient.
We address the actual creation of the Octrees given initial range maps, the proper definition
and calculation of mathematical quantities as well as correct numerical updates that include
the iterative reorganization of the solution’s hierarchical partitioning after each step.

2 Related work

In many fields, level-set methods are often employed to solve given problems in e.g. fluid
dynamics [2, 15, 16], computer graphics [1, 9] or 3D reconstruction [8, 13, 18] where the
physical properties of the model act upon the level-set function via PDEs. We refer the reader
to a survey on 3D distance fields as a special variant of level-set functions [10]. In contrast to
explicit representations which can entail topological difficulties as well as rendering mathe-
matical operations harder to implement, level-sets can implicitly represent arbitrary shapes
and are therefore often preferred. Nonetheless, optimizing in volumetric data always is costly
and related work tackled it in the following way:

Similarly to our approach, [25] also conducts variational data fusion and uses a runlength

KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION 3

Figure 2: Slicing through a dense TSDF with
a large δ = 20 cm (left) and a very tight δ =
2 mm (right). The narrow band at the real
object surface is clearly visible in the right
image. We want to numerically focus on this
interface while neglecting the uniform areas.

Figure 3: Left: Slicing through a dense
TSDF (left) and its Octree-version (right).
Blue areas close to the surface possess a finer
Octree-resolution since these represent the
narrow band during optimization and should
therefore be similar to the real TSDF values.

encoding that allows for fast decompression of the input data but does not address the prob-
lem of the structurally-changing minimizer during optimization. In a follow-up work [26],
the authors propose a coarser quantization of the TSDF values and introduce a point-wise his-
togram based problem. In [21] the authors suggest to modify the data term such that one tries
to be similar to the point-wise median. Again, none address the problem of the structurally-
changing iterate. The authors of [20] claim to have the first single-pass hierarchical-based
approach for incompressible Euler equations based on multi-grids, although earlier works
(e.g. [23]) already focused on tracking moving interfaces with tree-based structures. In
[15, 16], the authors deal with spatially adaptive techniques for incompressible flow and
state their surprise about the high accuracy of Octree-based mesh refinement even for small-
scale structures. The works [7, 22, 27] use dynamic Octree-based representations to store
scene geometry but do no conduct any elaborate schemes for the integration since their main
interest is mapping and efficient storage/updates for large-scale problems. [9] introduces
a data structure that includes a hierarchical partitioning where each cube uses a runlength
encoding. Although very efficient in storage and lookup, online restructuring is rather slow
and therefore less suited for iterative structural changes. In [19] and later [12], the authors
present an alternative to hierarchical partitioning by hashing the TSDF geometry to enable
near-constant time lookups. All of the above mentioned works are focusing only on efficient
storage and processing while paying little to no attention to the actual reconstruction qual-
ity. We instead are interested in reconstructing objects and thus on how to fuse the range
data such that we perform efficiently in terms of memory and runtime while keeping a high
reconstruction accuracy.

3 Methodology

Firstly, we show the computation of TSDFs with provided range data and the transformation
into their Octree-representations. Secondly, we introduce the new problem formulation and
give a way to efficiently solve it via node-wise split/join rules and a fast traversal technique.

Note that in contrast to [11] which fuses into RGB-D volumes, we solely focus here on
the geometric minimizer because the space partitioning is not applicable to color volumes.
Instead, we compute the coloring after meshing of the 0-isosurface similarly to [24].

4 KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION

3.1 TSDF-Octree generation
The generation of the TSDFs fi : Ω3 ⊂ R3→ R follows related work [11, 21, 22, 25]: given
the i-th frame of range data Di : Ω2 → R+ together with the corresponding projection πi :
R3→ Ω2, the idea is to compute the signed distance φi between the surface and each point
x ∈Ω3 of the reconstruction volume along the line of sight. Furthermore, scaling with δ and
truncation to [−1,+1] is performed to retrieve the final TSDF fi

fi(x) =

{
sgn(φi(x)) if |φi(x)|> δ
φi(x)/δ else

, with φi(x) = Di(πi(x))−||x−Ci|| (1)

where Ci is the projection center for the i-th frame in global coordinates. Additionally, we
compute for each TSDF a weight volume wi : Ω3→ {0,1} that signifies whether a voxel x
has been observed from view i or not via a check φi(x) < −η . Every unseen voxel in front
of this hard η-threshold is assumed to be solid geometry for a given fi.

Above scaling factor δ serves as an uncertainty band and should be well-chosen both to
compensate for measurement noise and to clearly divide between outer and interior space
(see Figure 3). Strictly speaking, areas which are far apart from the interface consume mem-
ory and runtime during optimization without having a drastic influence on the optimizer’s
object surface. Our goal is to ensure that these spaces remain computationally inexpensive at
all times during the optimization without impairing the final solution. To this end, we trans-
form our problem to work with space-partitioned entities which can adapt to the changing
narrow band of our iterated solutions.

Octree construction We construct TSDF-Octrees f ∗i from fi in a top-to-bottom manner.
Starting from root node n, we define the spread s of values subsumed by node n in f as

s f (n) =
∣∣∣∣ max

x∈Ω3(n)
f (x)− min

x∈Ω3(n)
f (x)

∣∣∣∣ (2)

with Ω3(n) being the subvolume that node n represents. Initially, Ω3(n) = Ω3 and the spread
will be maximal. From here we recursively apply a splitting rule: if the spread s f (n) at node
n is higher than a threshold τ = 0.1, we subdivide n into eight children and proceed further
down. This is recursively repeated as long as the condition is fulfilled or until we reach a
maximum Octree depth Dmax, corresponding to a pre-defined minimum metric voxel size.
After the partitioning we propagate the means upwards from the leafs to all inner nodes to
speed up computations during later optimization. See Figure 3 for a visual comparison.

3.2 Octree-based variational optimization
Similar to [11, 21, 25] we fuse all range maps into one volume by finding the minimizer of

E(u) :=
∫

Ω3

D(f,w,u)+λS(∇u) dx (3)

where we weight data fidelity against a regularization with a smoothness parameter λ . [25]
employs an outlier-robust L1 data term D(f,w,u) := ∑i wi · |u− fi| together with a Total Vari-
ation (TV) regularizer S(∇u) := |∇u| which has the advantage of penalizing the perimeter

KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION 5

of the level sets in u and in combination, TV-L1 induces a pure geometric regularization, as
found in [6]. Unfortunately, the non-differentiability requires elaborate solving schemes and
we thus follow [11, 21] by tightly approximating both terms with differentiable quantities

D(f,w,u) := ∑
i

wi ·Γ((u− fi)
2) , S(∇u) := Γ(|∇u|2) (4)

with Γ(x2) :=
√

x2 + ε2 together with a small ε > 0 being the epsL1 approximation [14].
An important aspect is the data term normalization since in its current form the func-

tional puts more emphasis on the data term if the number of range images increases. Instead
of dividing by the number of images we divide point-wise by the accumulated weight to
achieve a spatially consistent smoothing, regardless of how often a voxel has been seen [21].
Altogether, this strictly-convex functional can now be solved by gradient descent and in
our Octree-based variant, we furthermore replace all quantities with their space-partitioned
counterparts to finally retrieve

E(u∗) :=
∫

Ω3

D(f∗,w∗,u∗)
∑i w∗i + γ

+λS(∇u∗) dx, (5)

and instead solve for u∗ with a small γ in the normalizer to avoid division problems for
unseen voxels. To optimize Equation 5, we determine the steady state of our PDE

∂E
u∗

= λ div(S∇u∗(∇u∗))− Du∗(f∗,w∗,u∗)
∑i w∗i + γ

. (6)

Note that we, strictly speaking, optimize a new u∗ in each iteration since we constantly
change the structure of our iterate. Nonetheless, this showed to be not a problem in practice
since we observed a proper convergence in every case. We will now focus on clarifying how
we evaluate above terms and how to conduct the actual optimization in the Octree.

Optimization on the Octree We conduct the optimization by having at all times only one
version of u∗ in memory and adjusting the structure while we recursively traverse into each
node of u∗. This means that instead of integrating point-wise over the volume, we start from
the root and run along the tree while conducting our computations/restructuring on it before
proceeding to the next node in the volume in the same pass. To mathematically facilitate the
notation, we allow our TSDFs to take nodes as arguments.

For the repartitioning during optimization, we retrieve the gradient descent update ∆u∗t
at iteration t for u∗t . Since the update might encompass larger numerical changes, we need to
reflect this by restructuring u∗t+1 before applying the update such that no crucial information
is lost. In contrast to [15, 16] we do not refine the cube resolution of the Octree simply based
on their spatial distance to the narrow band but rather refine them based on numerical values.
For an Octree node n during our run, we compute, together with a gradient step size ξ , the
new value ∆n = u∗t (n)+ξ ·∆u∗t (n) and decide for the repartitioning together with a splitting
threshold τs, a joining threshold τ j and two rules:

• if n is a leaf of the Octree and |∆n|< τs, we split and recurse into the children

• else n is not a leaf of the Octree and we check if |∆n|> τ j. If this holds, we recursively
conduct the same check for the children and if successful, we join these children only
if furthermore they all hold values of equal sign. Otherwise, an implicit surface passes
through these nodes and joining them might rupture it.

6 KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION

Figure 4: Data term computation. Standing
at the green node n in u∗ at level 2, we query
all TSDFs at the same spatial location. Either
the level is not available (fi) in which case we
fetch the node that spatially subsumes n or
the level is the same/deeper (f j) and we fetch
the pre-computed value at the same level.

Figure 5: Regularizer computation. The red
arrows symbolize which nodes are needed to
get the divergence for the green node on the
right side. Fetching forward differences is al-
ways possible during the recursive run. For
backward differences we avoid numerical er-
rors by storing the node value before its split.

In order to compute node-wise expressions in our Octree-TSDFs, we simply fetch the
corresponding values from the tree nodes that represent the subvolume at this position: if
u∗(n) resides at tree level L, we either fetch the pre-computed corresponding values fi(n)
and wi(n) at level L, if the level exists, or take the closest leaf n′ that spatially subsumes n
(see Figure 4). The fi can be efficiently queried while moving alongside n in each Octree.

For the more complex quantity, the gradient ∇u∗, we use forward differences which need
to be fetched in a neighborhood around each node n. This can be easily accomplished dur-
ing the same pass since we can spatially look-up all nodes ahead of n which have not been
touched yet. To compute the divergence, we also need to be able to compute backward dif-
ferences. In our approach we want to be fast and therefore want to accomplish one optimizer
iteration in one pass through the Octree. Thus, we immediately restructure all visited nodes
and would therefore induce numerical errors if we fetch backwards during the same pass.
To remedy that we store for a node its value before splitting such that the computation is
proper (see Figure 5). Note that this is not applicable when joining a node since it would
need to carry a history of all its children values. However, due to our splitting rules, joins
never happen at interfaces and we thus can discard this otherwise problematic issue.

3.3 Meshing and coloring

As a final step, we apply Marching Cubes to extract the 0-level isosurface to retrieve a mesh.
To compute the coloring of the resulting mesh, we weigh for each vertex the reprojected
colors according to the dot product between its normal and every camera view vector, similar
to [24]. Furthermore, to supply color to unseen parts, we iteratively propagate the colors
along triangle boundaries and blend the final color in respect to the neighboring, colored
vertices and their dot products.

KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION 7

Figure 6: The four objects acquired with the Carmine 1.09 sensor (top) together with their
dense reconstructions (center) and their vertex-wise difference to their Octree-reconstructed
pendants (bottom). The minimum voxel size was set to 1.5mm and λ = 0.3 for all objects and
both methods. The saturation of the difference coloring has been set to ±2mm. Obviously,
the error induced by our approach stays bounded within the specified voxel size of 1mm.

4 Evaluation
The method was implemented in C++ and the experiments were conducted on a CPU with
32GB of RAM. We ran our experiments on different kinds of data: firstly, we synthetically
rendered 31 views of a sphere to measure our loss in accuracy on perfect, noise-free data.
Secondly, we acquired sequences of four objects (each consisting of 26 frames) with a com-
modity RGB-D sensor (Carmine 1.09) to assess the geometrical quality we can achieve with
low-cost devices. Lastly, we acquired 24 frames of a turbine blade taken with an industrial
high-precision depth sensor (GIS) that provides micrometer precision. Since we have a CAD
model of the turbine we evaluate how accurate we can reconstruct real-life objects with state-
of-the-art depth sensing technology which is important for manufacturing verification. For
comparisons with dense results, we implemented the method from [11].

For the experiments we found that running the optimization for 100 iterations with an
initial gradient step size ξ = 0.1 and halving it every 20 iterations was sufficient to converge
to good solutions for any object. Furthermore, we fixed η = 2cm but set the metric voxel
size sv and the uncertainty factor δ depending on the data source. For the synthetic data, we
set sv := 1mm and δ := 0.1mm, for the Carmine dataset sv := 1.5mm,δ := 2mm and for the
GIS data sv = 0.5mm,δ := 0.8mm.

For the Carmine sequences (Figure 6), we constantly retrieve very accurate solutions that
are on par with their dense versions. For a more quantitative comparison, we also compare
our reconstructions of the ’sphere’ and the ’turbine’ to their groundtruth models (Figures 7
and 8). To compute the vertex-wise difference, we find for each vertex of one reconstruction

8 KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION

Figure 7: Left: Dense result. Middle: Octree result. Right: Vertex-wise difference.

Figure 8: ’Turbine’ reconstruction. From left ro right: One frame from the sequence, the
Octree-reconstructed 3D mesh and the difference to the CAD model with mean error of
0.22mm and standard deviation of 0.5mm. Most errors accumulate at the sharp edge on the
left as well as the small indents on the right which where smoothed during optimization.

the closest point of the other reconstruction and compute their distance. The synthetic sphere
is nicely reconstructed and the mean error of 0.012mm± 0.070mm is virtually negligible.
Also the ’turbine’ reconstruction was very accurate with a mean error of 0.22mm±0.50mm
which is inside tolerable limits.

4.1 Memory consumption and runtime

Each dense TSDF stores for each voxel the actual distance value and the weight as floats.
In comparison, the Octree-TSDF stores per block pointers to 8 children, its parent node and
in addition to the above two floats another float value that represents the distance value just
before splitting to allow for the computation of the divergence in the same pass. The total
amount of memory needed to hold the data term is given in Table 1 and is drastically reduced
with the Octree approach for all sequences. To give another interesting insight we plot the
memory consumption of u∗ during the optimization in Figure 9. While in the dense approach
each iterate ut is constant in memory, its Octree-variant quickly decreases its footprint after
more and more blocks get joined. Analogously for the runtime in Table 2, our fast traversing
technique allows us to also outperform the dense variants except for the ’squirrel’. While the
runtimes for the dense TSDFs are dependent on the volume resolution, the geometry com-
plexity is the main driver of the runtime for the Octree method since frequent repartitionings
inbetween iterations can lead to a runtime penalty.

KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION 9

Figure 9: Left: Memory usage of the iterate u and u∗ during the optimization for the ’head’
sequence. The usage goes down quickly for the Octree-variant as the surface evolves in the
TSDF, leading to many block joins. Center/Right: Slicing through u∗ at iterations 1 and 100.

SDF Size/Res. Octree Size/Res.
sphere 3,968 MB / 2563 257 MB / 2563

statue 3,072 MB / 2563 683 MB / 2563

head 3,072 MB / 2563 806 MB / 2563

squirrel 3,072 MB / 2563 689 MB / 2563

can 3,072 MB / 2563 565 MB / 2563

turbine 24,576 MB / 5123 2,192 MB / 5123

Table 1: Memory consumption/volume resolution
for the input TSDFs fi for each sequence.

Dense Octree
sphere 3.9 2.8
statue 3.7 2.6
head 3.7 3.4

squirrel 3.7 4.7
can 3.7 3.2

turbine 26.1 9.5

Table 2: Runtime (in min-
utes) for the optimization.

4.2 Split and join

As stated, we apply split and join rules according to thresholds τs and τ j. Since these values
govern the structural density of our Octrees, a careful choice is important to uphold the
geometrical accuracy. Splitting early creates a finer partitioning and can lead to unnecessarily
high runtime and memory demands while joining too early can result in larger numerical
errors since smaller gradient increments get discarded. To have a visual feeling of the impact,
we show the fusion of some Carmine frames taken of a 3D print of the Stanford bunny in
Figure 11. Apart from the first case that virtually hinders nodes from splitting and leading
to massive Octree-artifacts with τs = 0, the geometry suffers less from quantization with an
increasing τs since it steers how fine the Octree describes the area around the narrow band.
Conversely, with a higher τ j we can delay the joining of nodes and thus have the same effect
on the area around the band, but from the opposite side, and with a value of τ j > 1 actually
disabling join operations.

The quantization error between a dense u and its induced Octree-version u∗ is

∑
n∈leafs(u∗)

∣∣∣∣u∗(n)−
1

Ω3(n)

∫

Ω3(n)
u(x)dx

∣∣∣∣ (7)

and in the ideal case it should be zero for each iterate pair (ut ,u∗t) during optimization. As
can be seen in Figure 10, the error decreases with higher values of both τs and τ j whereas
in the special case of τs = 0, the error grows larger due to the lack of splitting, leaving the
surface heavily artifacted while the dense version gets smoother.

10 KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION

Figure 10: The quantization error with three
configurations. The higher the thresholds,
the smaller the approximatation error.

Figure 11: The quantization effect of the two
join/split thresholds τs and τ j for the three
configurations from the left.

5 Conclusion
To our knowledge, we are the first to present an approach towards variational range data
fusion by partitioning the solutions with a dynamic Octree structure. We have shown how to
efficiently conduct restructuring based on iterative node-wise updates of the supplied PDE
and that the achieved results are geometrically accurate on multiple datasets and nearly iden-
tical to their dense counterparts while being more efficient overall. It would be interesting
to investigate further into different ways of computing the required quantities, alternative
split/join decisions as well as other solving techniques (e.g. primal-dual [5]).

Acknowledgements The authors would like to thank Toyota Motor Corporation for sup-
porting and funding this work.

References
[1] Jakob Baerentzen and Niels Christensen. Volume sculpting using the level-set method.

In Shape Modeling International, 2002.

[2] Adam W. Bargteil, Tolga G. Goktekin, James F. O’brien, and John a. Strain. A semi-
Lagrangian contouring method for fluid simulation. ACM Transactions on Graphics,
25(1):19–38, 2006.

[3] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[4] Fatih Calakli and Gabriel Taubin. SSD: Smooth Signed Distance Surface Reconstruc-
tion. Computer Graphics Forum, 30(7), 2011.

[5] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Mathematical Imaging and Vision, 40, 2011.

[6] Tony Chan, Selim Esedoglu, and Mila Nikolova. Algorithms for finding global mini-
mizers of image segmentation and denoising models. SIAM Journal on Applied Math-
ematics, 66:1632–1648, 2006.

KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION 11

[7] Jiawen Chen, Dennis Bautembach, and Shahram Izadi. Scalable real-time volumetric
surface reconstruction. ACM TOG, 32(4):1, 2013.

[8] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In SIGGRAPH, 1996.

[9] Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and Ken Museth.
Hierarchical RLE level set: A compact and versatile deformable surface representation.
ACM TOG, 25(1), 2006.

[10] Mark W. Jones, J. Andreas Baerentzen, and Milos Sramek. 3D distance fields: A survey
of techniques and applications. IEEE TVCG, 12(4), 2006.

[11] Wadim Kehl, Nassir Navab, and Slobodan Ilic. Coloured signed distance fields for full
3D object reconstruction. In BMVC, 2014.

[12] Matthew Klingensmith, Ivan Dryanovski, Siddhartha Srinivasa, and Jizhong Xiao.
CHISEL: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using
Spatially-Hashed Signed Distance Fields. In RSS, 2015.

[13] Kalin Kolev, Thomas Brox, and Daniel Cremers. Fast joint estimation of silhouettes
and dense 3D geometry from multiple images. TPAMI, 34(3), 2012. ISSN 01628828.

[14] Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Ng. Efficient L1 Regularized
Logistic Regression. In AAAI, 2006.

[15] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water and smoke with an
octree data structure. ACM TOG, 23(3), 2004.

[16] Frank Losasso, Ronald Fedkiw, and Stanley Osher. Spatially adaptive techniques for
level set methods and incompressible flow. Computers and Fluids, 35(10), 2006.

[17] Donald Meagher. Geometric modeling using octree encoding. Computer Graphics and
Image Processing, 19(1):85, 1982.

[18] Richard A. Newcombe, Andrew J. Davison, Shahram Izadi, Pushmeet Kohli, Otmar
Hilliges, Jamie Shotton, David Molyneaux, Steve Hodges, David Kim, and Andrew
Fitzgibbon. KinectFusion: Real-time dense surface mapping and tracking. In ISMAR,
2011.

[19] Matthias Niessner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-
time 3D Reconstruction at Scale Using Voxel Hashing. ACM TOG, 32(6), 2013.

[20] Stéphane Popinet. Gerris: a tree-based adaptive solver for the incompressible Euler
equations in complex geometries. Computational Physics, 190(20), 2003.

[21] Christopher Schroers, Henning Zimmer, Levi Valgaerts, Oliver Demetz, and Joachim
Weickert. Anisotropic Range Image Integration. Pattern Recognition, LNCS, 2012.

[22] Frank Steinbrucker, Christian Kerl, Jürgen Sturm, and Daniel Cremers. Large-scale
multi-resolution surface reconstruction from RGB-D sequences. In ICCV, 2013.

[23] John Strain. Tree Methods for Moving Interfaces. Computational Physics, 151(2),
1999.

12 KEHL ET AL.: OCTREE-BASED VARIATIONAL RANGE DATA FUSION

[24] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J. Leonard, and John Mc-
Donald. Robust real-time visual odometry for dense RGB-D mapping. In ICRA, 2013.

[25] Christopher Zach, Thomas Pock, and Horst Bischof. A globally optimal algorithm for
robust TV-L1 range image integration. In ICCV, 2007.

[26] Christopher Zach, David Gallup, Jan Frahm, and Marc Niethammer. Fast Global Label-
ing for Real-Time Stereo Using Multiple Plane Sweeps. In Proc. of Vision, Modeling
and Visualization Workshop, 2008.

[27] Ming Zeng, Fukai Zhao, Jiaxiang Zheng, and Xinguo Liu. Octree-based fusion for
realtime 3D reconstruction. Graphical Models, 75(3), 2013.

