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This supplementary material presents additional experimental results.

1 Additional Results

Tables 1 to 3 shows the instance segmentation performance, measured in AP", of our method
and other works for all 20 classes in the VOC 2012 dataset [2] at the IoU thresholds of 0.9,
0.7 and 0.5 respectively. Our method achieves the highest AP” for 15 classes at an IoU of
0.9, 14 classes at an IoU of 0.7, and 9 classes at an IoU of 0.5.

Table 4 shows the semantic segmentation performance of our final segmentation network
with higher-order detection potentials, and our baseline network without these potentials [5]
on the full VOC Validation set. The detection potentials outperform the baseline on all but
three of the classes.

Figure 1 shows a visualisation of the AP” for each class at different IoU thresholds. Each
“column” of Fig. 1 corresponds to the AP" for each class at a particular IoU threshold. It is
thus an alternate representation for the information shown in Tables 1 to 3.

We can see that the classes that have poor instance segmentation performance (“bicycle”,
“chair”, “dining table” and “potted plant”), also have poor semantic segmentation perfor-
mance as well (Table 4). This correlation is not surprising, since we first perform semantic
segmentation before refining this category-level segmentation into an instance segmentation.
However, the classes, “car” and “bottle” are exceptions as their instance segmentation per-
formance is relatively poor (it is below the mean AP" in Tables | to 3), whilst its semantic
segmentation is comparatively high — the IoU is higher than the average IoU for all classes
(Table 4). This suggests that our method has difficulties in identifying instances of these two
classes. The same trend is also evident in the results of PFN [4].

Finally, Figures 2 and 3 show additional success cases, whilst Figure 4 shows failure
cases of our method.
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Figure 1: Visualisation of the AP" for each of the 20 PASCAL classes at different IoU thresh-
olds. The x axis shows the IoU threshold whilst the y axis shows the class label. The colour
indicates the AP" for a particular class at a specific IoU threshold. Best viewed in colour.
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Figure 2: Some examples where our system has performed well. Detector outputs are over-
layed on the input image. Top row: Our method is able to accurately segment the image,
and distinguish the three cars in the background. Second row: Part of the dog’s tail, which
was misclassified as “sheep” is not included in the instance segmentation of the dog. Third
and fourth rows: The table (which is not annotated in either the semantic segmentation or
instance segmentation ground truth), has been identified by our system. Fifth row: Both the
category-level, and instance-level segmentations are quite accurate. Note how many false-
positive detections have been correctly ignored by our system.
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Figure 3: Additional images where our method has performed well. Note that these images
are easier to segment instances in, as they are no objects of the same class occluding each
other. In cases such as these, the naive method initially described in Section 3.3, would
perform just as well. The object detector outputs are overlayed on the input image. Note
how many false-positive detections have been correctly ignored. This applies to the seman-
tic segmentation, where the incorrect detection does not cause an error in the category-level
segmentation (Rows 2 to 4), and in the instance segmentation as well where additional in-
stances are not identified (Row 1).
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Figure 4: Some failure cases of our system. Detector outputs are overlayed on the input
image. Top row: There are two bounding boxes covering the person on the left, and our
system is able to still identify one instance. However, our segmentation network is misled
by the false-positive person detection on the far left. Moreover, there are four people in the
background (out of focus), that have not been identified. These missed instances lead to very
bad performance when evaluating the average precision on this image. Second row: Multiple
erroneous detections have been ignored. Nonetheless, the chairs and person on the far right
have not been segmented accurately. Third row: The occluded sheep around the centre of
the image has not been segmented correctly. In this case, our semantic segmentation has per-
formed well, but due to occlusion, one sheep instance has not been segmented well. Fourth
row: Another failure case due to occlusions. The sheep also look very visually similar which
makes them difficult to distinguish (they would be easier to distinguish if our model was
aware of the different parts that constitute an object). Fifth row: The semantic segmenta-
tion network has not performed very well on this complex image, and that has affected our
instance segmentation as well.
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