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Abstract

We propose a method for accelerating the matching and learning processes of the
eigenspace method for rotation invariant template matching (RITM). To achieve efficient
matching using eigenimages, it is necessary to learn 2D-Fourier transform of eigenim-
ages before matching. Little attentions has been paid to speeding up the learning pro-
cess, which is important for applications in which a template changes frame by frame.
We propose two key ideas: First, to further speedup the matching process using FFT,
we decompose rotated templates to orthogonal fast-eigenimages using Fourier basis by
utilizing the circularity of rotated templates. Second, to speedup the learning process, we
compute 2D-Fourier transform of the fast-eigenimages in polar coordinates using Han-
kel transform[11]. Proposed learning method is equivalent to but considerably faster than
that existing method, i.e., rotated template generation, SVD and 2D-FFTs in Cartesian
coordinates. Experiments revealed that the learning, matching and the total processes
becomes respectively 120, 3, and 36 times faster while keeping comparable detection
rate compared to existing method utilizing SVD in Cartesian coordinates. The algorithm
was successfully applied to global localization of mobile robot where online learning is
required.

1 Introduction
Correlation-based template matching is one of the basic techniques used in computer vision.
Among them, rotation invariant template matching (RITM), which locates a known template
in a query irrespective of the template’s translation and orientation, has been widely put to
use in many industrial applications. A naive implementation of RITM requires intensive
computation since one needs to correlate query f with N rotated templates TTT (Fig.1 left).
Eigenspace methods takes advantage of the fact that a set of correlated images TTT can be
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Fig. 1: Overview of the proposed method

approximately represented by a small set of eigenimages. Once eigenimages and it’s 2D-
Fourier transform are computed, RITM can be performed very efficiently using these 2D-
Fourier transformed eigenimages[6].

There have been efforts to accelerate the matching process; however, little attention has
been paid to the speeding up of the learning process to build 2D-Fourier transform of eigen-
images. It is also important to speedup the learning process, especially for applications such
as global robot localization, where a template changes frame by frame and efficient online
learning is required. The existing eigenspace methods are not feasible for problem settings
of this kind, because it requires a lot of time for generation of rotated templates, SVD and
2D-FFT.

1.1 Overview of the proposed method
We propose Fast Eigen Matching which accelerate matching and learning process of the
eigenspace method for RITM. Our contributions are as follows:

1. By focusing on the circularity of in-plane rotation and concentration of power spec-
trums to low frequency, we compute fast-eigenimages HHH by expanding a templates
using Fourier basis, which leads to the use of FFT in a matching process (Fig.1 mid-
dle). Matching speed is further improved by a non-negligible amount even though
RITM has been rigorously studied in terms of matching acceleration.

2. By utilizing the fact that Fourier expansion in polar coordinates is efficiently trans-
formed to frequency domain using Hankel transform[11], our method computes 2D-
Fourier transform of each fast-eigenimages H̃̃H̃H in polar coordinate (Fig.1 right). This
computation is equivalent to existing learning method, i.e., time-consuming rotated
template generation, numerical SVD and 2D-FFTs in Cartesian Coordinates, but sub-
stantially boosts the learning process by avoiding these time-consuming computation.

Our experiments revealed that the learning, matching, and total processes respectively be-
comes 120, 3, and 36 times faster, while keeping comparable matching performance com-
pared to previous method. As a representative example, we show an application to global
localization with a Particle Filter[14].

1.2 Related work
Variants of Cross-Correlation (CC), such as Zero mean Normalized CC (ZNCC)[7], Phase
only Correlation (POC)[13], and Gradient Correlation (GC)[16] are widely used because
of their robustness against noise, especially for textureless images. However, using these
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correlation-based methods for RITM are inefficient, as correlation for every rotated template
should be computed. Many efforts have been paid to the accelerate matching process.

There have been attempts to improve efficiency by evaluating only important pixels.
For example, Borgefors used edge pixels[2], Liang used discriminative pixels based on co-
occurrence[8], and Ouyang used the projection to the Haar basis and skip evaluating pixels
that had no possibilities to be the maximum[10]. These methods are intended to speedup the
correlation with a single template rather than the whole template matrix. They are thus still
inefficient for RITM.

Rotation Invariant Phase Only Correlation (RIPOC)[15, 4]utilize the fact that the power
spectrums are invariant to translation and decouple the estimation of rotation and translation,
thus each of them requires only one correlation. Thought RIPOC is highly efficient, it is
prone to fail when there exists a power spectrum in the background of a query similar to the
template, as it discards phase information in the process of estimating rotation.

In the Eigen Template method[6], most relevant to ours, they applied the idea of eigenspace
methods to RITM and developed an efficient matching algorithm using pre-computed 2D-
Fourier transformed eigenimages. However to the best of our knowledge there is no methods
that focuses on the efficient computation of a 2D-Fourier transformed eigenimages in the
literature of the eigenspace method.

2 Fast Eigen Matching

2.1 Problem Formulation
The similarity of RITM for query f ∈ RL1×L2 and a template rotated by θ , Tθ ∈ RK1×K2, is
defined using CC 1such that

g(x,y,θ) =

ˆ ˆ

R
f (x+ x′,y+ y′)Tθ (x′,y′)dx′dy′, (1)

where, (x,y,θ) are translational and rotational parameters and R is the region where a tem-
plate and the query overlaps. Eq.(1) relates how close the template matches the query for
each parameter. For fixed translation, similarity is computed with the dot product of cropped
query f(x,y) ∈ RK1×K2 (left top corner is (x,y)) and a template rotated by θ , namely

g(x,y,θ) = ⟨ f(x,y),Tθ ⟩. (2)

It is obvious that to get finer rotational resolutions N, evaluating the above similarity
takes a long time. Eigenspace methods are based on the decomposition of a template matrix
　 TTT := [T0,T(2π)/N,...,T2π−(2π)/N ] ∈ RK1×K2×N with the product of two orthogonal matrices,
eigenimages {H1, ...,HM} ∈ RK1×K2 and eigenfunctions ΨΨΨ ∈ RM×N , i.e. Tθ ≈ ∑m Hmψm(θ),
which yield approximation of Eq.(2) that can be expressed as

g(x,y,θ) ≈
M

∑
m

⟨ f(x,y),Hm⟩ψm(θ) =
M

∑
m

rm(x,y)ψm(θ) = rrr(x,y)ΨΨΨ, (3)

1We will concentrate our discussion to approximate CC of RITM for simplicity. It is straight forward to get
approximations of NCC/ZNCC/POC/GC using the results of CC.
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Fig. 2: Fast RITM using FFT

where M (M < N) is the number of eigenimages used to approximate Eq.(1), ψm ∈ RN is a
row vector of ΨΨΨ, and rrr(x,y) := [⟨ f(x,y),H1⟩, ...,⟨ f(x,y),HM⟩] ∈ RM is response. We observed
that most of the computations in the matching process are consumed in computing similarity
from response, i.e. computing product of response rrr(x,y) and eigenfunctions ΨΨΨ. In 2.2, we
will show a novel algorithm that speeds up the matching process by making this computation
efficient.

By convolving each eigenimages Hk with query f , we can get the similarity for all trans-
lations, ggg(θ) ∈ RL1×L2. These convolutions are usually done in the Fourier domain using
2D-Fourier transform of Hk and f for efficiency, 2namely

ggg(θ) ≈
M

∑
m

{F−1
x,y (Fx,y( f )◦ H̃m)} ·ψm(θ), (4)

where H̃m is 2D-Fourier transformed eigenimage in Cartesian coordinates which is zero
padded to size of query, L1 × L2. Thus it is necessary to speedup the computation of the
2D-Fourier transformed eigenimages H̃m when a template changes frame by frame. In 2.3,
we will show a novel algorithm that calculates H̃m much more efficiently than computing it
in Cartesian coordinates.

2.2 Fast Rotation Invariant Template Matching Using FFT

We approximate TTT with the product of the low frequency part of the Discrete Fourier Trans-
form (DFT) matrix and orthogonal vectors which we call fast-eigenimages. This factoriza-
tion enables the use of FFT to speedup the computation of Eq.(3) in matching process.

2.2.1 Approximation of similarity using low frequency part of DFT matrix

We will show that the template matrix TTT can be approximated using low the frequency part of
the DFT matrix. It is well known that the covariance matrix of TTT (comprising from in-plane
rotation of an image) is a circulant3 and that a closed form solution for eigenvalue decom-
position of a circulant matrix is computed using a DFT matrix FFF [3] , i.e. TTT ⊤TTT = FΛFFΛFFΛF†4

2◦: Hadamard product. ∗: convolution. Fx,y,F−1
x,y : Forward and Inverse 2D-Fourier transform.

3Precisely, this discussion is true only for infinite-resolution images.
4† : conjugate transpose
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where ΛΛΛ ∈ RN×N is a diagonal eigenvalue matrix. To summarize, TTT can be decomposed as

TTT =UΛUΛUΛ1/2FFF† = HFHFHF†, UUU⊤UUU = III, (5)

where HHH = [H1, ...,HN ], we call this fast-eigenimages. We observed that the intensity in TTT
changes slowly in the rotational direction for many natural images. This observation leads
to the following approximation using the M-lowest frequency parts of the DFT matrix, FFFl

TTT ≈ [H1, ...,HM]FFF†
l , FFFl ∈ RN×M. (6)

Since Hm are perpendicular to each other, ΨΨΨ in Eq.(1) can be replaced with FFFl , i.e.

ggg(x,y) ≈ rrr⊤
(x,y)FFF

†
l , ggg(x,y) ∈ RN , (7)

it gives a similarities of each discretized rotations (Fig.2 top).

2.2.2 Fast calculation of similarity using M-dimensional FFT

By decomposing FFFl in Eq.(7) using the small DFT matrix FFFs ∈ RM×M , i.e. FFFl = FFFs DDD, we
get the approximation of Eq.(1) using M-dimensional FFT (Fig.2 bottom):

ggg(x,y) ≈ FFT(rrr⊤
(x,y))DDD, D ∈ RM×N . (8)

Since most of the elements in D are approximately zero, the computational complexity
of Eq.(8) is O(M log2 M) instead of MN in the existing method.

2.2.3 Pixel culling using upper bound of similarity

For some applications, users are interested in finding sets of parameters in which the similar-
ity exceeds the predefined threshold. Since the norms of row vectors of FFFl are the same, the
L1-norm of response vector, ∑M

m |r(x,y)(m)| gives the upper bound of similarity. We can safely
skip the calculation of similarity for which the upper bound is smaller than the threshold.

2.3 Efficient computation of 2D-Fourier transform of fast-eigenimage
In cases where templates changes frame by frame, the learning process should also be com-
puted efficiently. We show a way to compute 2D-Fourier transform of fast-eigenimages
using Hankel transform in polar coordinates, which avoids time-consuming rotated template
generation, decomposition and 2D-FFT. This makes it possible to obtain extremely fast and
memory-efficient learning algorithm while keeping the good property of FFT for fast match-
ing. An overview of the proposed algorithm compared to the conventional one is shown in
Fig.3.

2.3.1 Similarity in polar domain

The similarity of θ rotated template and query in Cartesian coordinates are given using polar
transformed non-rotated image T0 as,

g(x,y,θ) =

ˆ ˆ

f(x,y)(r,τ)T0(r,τ −θ)ρdρdτ, (9)
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Fig. 3: Overview of proposed learning algorithm.

, where, ρ is radius and τ is angle from center of image. Eq.(9) is based on the relation
between Cartesian and polar coordinates, T0(ρ ,τ −θ) = Tθ (x,y) where x := ρ ·cos(τ), y :=
ρ · sin(τ) . Using Fourier expansion, we can expand T in Eq.(9) to

T0(ρ,τ −θ) =
1√
N

N−1

∑
m=0

φm(ρ)exp(i(τ −θ)m), (10)

where φ m(r) is a Fourier coefficient and N is the number of discretization for rotational
direction. This expansion can be computed efficiently directly from a Cartesian image using
Fast Polar Fourier Transform[1].

2.3.2 Approximation with low frequency part of Fourier basis

Discussions similar to that in (2.2.1) leads to the approximation of Eq.(10) using the M-
lowest frequency parts of the Fourier basis. Substituting this result into Eq.(9) leads to
the same approximation as Eq.(7), where m-th element of response vector rrr(x,y) is give as
follows,

rm(x,y) =

ˆ ˆ

f(x,y)(ρ ,τ)Hm(ρ ,τ)dρdτ, Hm(ρ ,τ) := ρφm(ρ)ψm(τ), (11)

where Hm(ρ,τ) is the fast-eigenimage in polar coordinates, and ψm is Fourier basis. This
approximation corresponds to Eq.(7) in Cartesian coordinates.

2.3.3 2D-Fourier transform of fast-eigenimage without 2D-FFT

Converting Hm(ρ ,τ) in Eq.(11) to Cartesian coordinates using polar to Cartesian transform,
P−1, yields fast-eigenimage similar to the one discussed in (2.2). However, transforming
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Lena Bark Rice Aerial

Fig. 4: Query images used

Table 1: Computation time[sec]

Learning Matching Total
ZNCC 5.603 0.675 6.278
NA-GC 4.933 0.442 5.375
CE-GC 2.630 0.172 2.802

Proposed CF-GC 1.653 0.055 1.708
Proposed PF-GC 0.022 0.055 0.077

each Hm(ρ ,τ) from polar to Cartesian coordinates and computing its 2D-FFT are compu-
tationally intensive (Fig.3 Polar naive). Instead, we compute 2D-Fourier transform in polar
coordinates using Hankel transform H , such that

H̃m(ξρ ,ξτ) = Hm(φm(ρ)) ψ̃m(ξτ) = φ̃m(ξρ) ψ̃m(ξτ), (12)

where Hm(φm(ρ)) =
´

ρφm(ρ)Jm(ξρ ρ)dρ and Jm is the Bessel function of the first kind[11].
This transformation corresponds to 2D-FFT in Cartesian coordinates but is much faster. This
efficient Fourier transformation using Hankel transform is on the fact that f(x,y)(ρ ,τ) is cyclic
in rotation direction[11].

The result of each direct product in Eq.(12) (Fig.3 left bottom) can be transformed to
Cartesian coordinates, but this transformations are computationally intensive. Instead, we
compute polar to Cartesian transformation separately for φ̃m(ξρ) and ψ̃m(ξρ). Result of
Hankel transform, φ̃m(ξρ), which are functions that depend only on ρ , are efficiently con-
verted to Cartesian-Fourier domain φ̃m(ωx,ωy) using lookup table. Clearly, ψ̃m(ξτ) are inde-
pendent from template, thus we can pre-compute ψ̃m(ωx,ωy). Finally, 2D-Fourier transform
of fast-eigenimages H̃m(ωx,ωy) are computed (Fig.3 Proposed) as,

H̃m(ωx,ωy) = φ̃m(ωx,ωy) ψ̃m(ωx,ωy). (13)

If the templates are available in polar coordinates, H̃m(ωx,ωy) can be computed more effi-
ciently. We will demonstrate this in chapter 4.

3 Evaluation

To demonstrate that our method achieves superior efficiency while keeping comparable
matching performance with the existing method, we evaluated the computational time and
detection rate using four representative images of size 512 × 512[pix], shown in Fig.4. For
each image, we randomly rotated and cropped to generate a circular template of radius
60[pix], and added Gaussian noise of variance up to 0.1 to the query. Similarities between
the query and the templates were calculated with each algorithm and parameter with peak are
used for evaluation. We evaluated the matching performance with a “success” rate, defining
“success” as achieving estimated translational and rotational errors of less than 2[pix] and
2[deg], respectively. The results are the average of 200 evaluations for each noise level. We
have compared our method with ZNCC[7], GC[16] (NA-GC) and Edge Eigen[6] (CE-GC),
Edge Eigen is an improved version of Eigen Template method and it is an approximation
of GC. We also approximated GC, using decomposition in Cartesian coordinates (CF-GC
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Query/Template ZNCC NA-GC CE-GC CF-GC PF-GC

Fig. 5: Example detection result for Lena with Gaussian noise of variance 0.1. Left-
most image shows the query and the template(Left top) and the others shows similarities,
maxθ g(x,y,θ), of each algorithm. CF-GC and PF-GC are proposed method.
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Fig. 6: Detection rate of each algorithm for different data set.

Eq.(7)) and polar coordinates (PF-GC Eq.(11)). The similarity of GC gGC is defined as

gGC(x,y,θ) =

ˆ ˆ

R
fx(x+ x′,y+ y′)Tx,θ (x,y)dx′dy′ +

ˆ ˆ

R
fy(x+ x′,y+ y′)Ty,θ (x,y)dx′dy′,

(14)
where, fx, fy,Tx,θ and ,Ty,θ are derivatives of f and Tθ . For proposed methods, CF-GC and
PF-GC, each derivative was integrated to single complex image as f̄ = fx + i fy. This is
because treating two derivatives as single complex image is more efficient than computing
separately for fx and fy, since our eigenfunctions (DFT) are complex. All algorithms were
implemented in Matlab 2016a for Mac and evaluated using iMac Late 2012 with Intel Core
i7 3.4GHz CPU and Nvidia Quadro K6000 GPU. Correlation was done in Fourier domain
for all methods. We used N = 512 for ZNCC and N-GC, and for E-GC and F-GC we extract
M = 64 (fast-)eigenimages from N = 512 discretized rotation. Bilinear interpolation are used
for image rotation (for ZNCC, N-GC, CE-GC and CF-GC) and Cartesian to polar conversion
(for PF-GC). Computation time of each method are shown in Table 1. Learning for ZNCC
and NA-GC include image rotation and 2D-FFT of it. Examples of similarly (maxed for θ
direction) are shown in Fig.5, and detection rate are shown in Fig.6

As demonstrated in Table 1, Fig.5, and 6, our polar decomposition methods (PF-GC) are
much faster than the existing methods , and at the same time achieve comparable detection
rate with them. Comparison of CE-GC (numerical SVD in Cartesian coordinates) and CF-
GC (DFT in Cartesian coordinates) shows almost the same detection rate, it suggests that
decomposing template matrix using DFT instead of numerical SVD boosts RITM without
affecting the detection performance. Comparison of CF-GC (DFT in Cartesian coordinates)
and PF-GC (DFT in Polar coordinates) shows slight deterioration at the expense of signifi-
cant speedup.

Our hypothesis for this deterioration is that the error induce by Cartesian to polar trans-
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Fig. 7: Snapshot of localization process. (a)Template (b)Computed similarity (green) is
super-imposed on query (Magenta). We can observe many local peaks. (c)(d) Particle dis-
tribution (green) is super-imposed on query for t = 2 and t = 100. Estimated robot pose are
shown in yellow arrow, and the true pose and the path are shown in red arrow and cyan line
and t in the figure indicate frame number. See also the supplemental video.

formation reduce the quality of fast-eigenimages. Actually, as seen in next chapter, when
data is available in polar coordinates we observed no noticeable difference for each of the
decomposition method.

4 Application to global localization
Our algorithm is most useful when a template changes frame by frame and similarity for all
parameters are necessary. We applied our method to the global localization task for a mobile
robot equipped with a Laser Range Finder (LRF). Typically, features in a template are not
unique in global map and thus it is difficult to localize uniquely through a single observation.
To address this issue, we build a Particle Filter based Monte Carlo localization framework
similar to [14]. The main difference with [14] is that likelihood of observed range data z,
namely p(z|xxx), were calculated for all discretized parameters in our implementation, instead
of only where particle exist. Therefore our framework is easily recoverable from robot kid-
napping, or global localization failure, by assuming that the robot might get kidnapped with
a small probability.

We simulated odometry with a variance of 2[pix]/frame for translation and 1[rad]/frame
for rotation. Range data were simulated by ray-tracing with Gaussian noise of variance
5[pix] in the range direction. For our PF-GC, range data converted to polar image of size
64 × 512[pix] (template) were matched with global map of size 512 × 512[pix](query), re-
constructed from real range data[5]. For other methods range data was converted to circular
image of radius 60[pix] as same as chapter 3. The results are shown in Fig.7, and Table
2. The computation time was almost same as that shown in Table 1, except that the learn-
ing time of CF-GC was further reduced. This is because we can skip Cartesian to polar
transformation in this example.

5 Conclusion
We propose Fast Eigen Matching that speeds up the learning and matching processes of
the eigenspace method for rotation invariant template matching(RITM). By experiments,
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Table 2: Translational/rotational error of 50 frame used for evaluation and computation time

Translational error [pix] Rotational error [deg] Computation time[sec]
mean variance mean variance Learning Matching Total

ZNCC 0.011 0.285 0.8652 0.0060 5.605 0.675 6.280
NA-GC 2.070 1.649 0.9568 0.0055 4.931 0.441 5.372
CE-GC 1.905 2.7870 0.8079 0.0122 2.630 0.170 2.800

Proposed CF-GC 1.826 1.171 0.9626 0.0154 1.663 0.055 1.718
Proposed PF-GC 2.145 0.916 0.6303 0.0061 0.007 0.055 0.062

we demonstrated that our methods achieved superior efficiency while keeping comparable
matching performance. Our methods are successfully applied to global localization of mo-
bile robot equipped with LRF where online learning is required. The algorithm can also be
applicable to image data [12, 9].
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