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Summary

The JNPDL model is well motivated by the current drawbacks of dictionary learning approaches, while each constraints
are also well designed (the novel discriminative graph constraints are proposed, and all constrains are designed to be easily
optimized). Aiming to bridge the gap between features and dictionary, we do think the proposed idea of learning a projec-
tion for features jointly with the dictionary is worth noticing. Consider that the given training data is usually not naturally
discriminative, yhus the discrimination of the learned dictionary will be limited by the training data. Jointly learning the dis-
criminative feature projection and discriminative dictionary together helps to improve each other. The key of JNPDL is to
learn a discriminative projection (non-negativity is one way to discrimination) that can better work with the dictionary.

In the supplementary material, we give the detailed optimization framework for the JNPDL model in Appendix A, and
then provide a detailed proof in Appendix B to show the convergence of the updating rules for P and M is theoretically
guaranteed. In other words, the proposed multiplicative updating algorithm for the non-negative projection P in the paper is
proved to be convergent.

Appendix A: Optimization Framework

We adopt a standard iterative learning framework to jointly learn the sparse representation X , the non-negative projection
matrixP , the intermediate non-negative basis matrixM and the dictionaryD. The proposed algorithm is shown in Algorithm
1. The non-negative projection learning converges as we prove in Appendix B.

Non-negative projection learning

To learn the non-negative projection, we optimize P ,M withD,X fixed. Thus the JNPDL model is rewritten as

min
P≥0,M≥0

{
‖PY −DX‖2F +

K∑
i=1

‖PYi −DiX
i
i‖2F

+ α1‖Y −MPY ‖2F + α1β · Tr(P̂ Y LpY
T P̂ T )

+ α1β · Tr(P̃ Y Lp
pY

T P̃ T ) + α1‖M − P T ‖2F
} (1)

which is essentially a projective non-negative matrix factorization problem [6, 2]. We use the multiplicative iterative solution
[6, 2, 4] to solve Eq. (1). Specifically, we transform it into tractable sub-problems and optimizeM and P by a multiplicative
non-negative iterative procedure.

Because M is the basis matrix, it is necessary to require each column mi to have unit l2 norm, i.e., ‖mi‖ = 1. This
extra constraint makes the optimization more complicated, so we compensate the norms of the basis matrix into the coefficient
matrix as in [4] and replace α1βTr(P̂ Y LpY

T P̂ T ) + α1βTr(P̃ Y Lp
pY

T P̃ T ) with

α1β ·
(

Tr(Q̂P̂Y LpY
T P̂ T Q̂T ) + Tr(Q̃P̃Y Lp

pY
T P̃ T Q̃T )

)
(2)

where Q̂ equals diag{‖m1‖, · · · , ‖mq‖} and Q̃ equals diag{‖mq+1‖, · · · , ‖ms‖}.
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On optimizingM with P ,D,X fixed. We can further rewrite Eq. (18) as Tr(MGmM
T ) where

Gm = Gm+ −Gm−

=

[
P̂ Y (α1βBp)Y T P̂ T 0

0 P̃ Y (α1βB
p
p)Y

T L̃T

]
� I

−
[
P̂ Y (α1βWp)Y T P̂ T 0

0 P̃ Y (α1βW
p
p )Y

T L̃T

]
� I

(3)

where� denotes the element-wise matrix multiplication, and I is an identity matrix. Then we put the non-negative constraints
into the objective function with respect to M , and define ψij as the Lagrange multiplier for M ≥ 0. With Ψ = [ψij ], the
Lagrange L(W ) is defined as

L(M) =‖PY −DX‖2F +
∑
‖PYi −DiX

i
i‖2F+

α1‖Y −MPY ‖2F + Tr(MGmMT )

+ α1‖M − P T ‖2F + Tr(ΨMT )

. (4)

Thus the partial derivative of L with respect toM is

∂L
∂M

=− 2α1Y Y TP T + 2α1MPY Y TP T

+ 2MGm + 2α1M − 2α1P
T +Ψ

. (5)

According to the Karush-Kuhn-Tucker (KKT) condition (ψijMij = 0) and ∂L
∂M = 0, we can obtain the update rule:

M
(t+1)
ij = M

(t)
ij

(α1Y Y TP T +MGm− + α1P
T )ij

(α1MPY Y TP T +MGm+ + α1M)ij
. (6)

On optimizing P with M ,D,X fixed. After updating M , we normalize the column vectors of M and multiply the
norm to the projective matrix P , namely Pi ← Pi × ‖mi‖2, mi ← mi/‖mi‖2,∀i. By using the normalized M , we
simplify Eq. (18) as α1βTr(P̂ Y LpY

T P̂ T ) + α1βTr(P̃ Y Lp
pY

T P̃ T ). Thus the Lagrange L(P ) is

L(P ) = ‖PY −DX‖2F +
∑
‖PYi −DiX

i
i‖2F+

α1βTr(P̂ Y LpY
T P̂ T ) + α1βTr(P̃ Y Lp

pY
T P̃ T )+

α1‖Y −MPY ‖2F + α1‖M − P T ‖2F + Tr(ΦP T )

(7)

where φ is the Lagrange multiplier for constraint Pij ≥ 0 and Φ = [φij ]. After setting ∂L
∂P = 0 and applying KKT condition

(φijPij = 0), we obtain the update rule for P :

P
(t+1)
ij = P

(t)
ij

(DXY T +
∑

DiX
i
iY

T
i + α1M

TY Y T

+ α1M
T + α1β

[
P̂ tY WpY T

P̃ tY W p
p Y

T

] )
ij( P tY Y T +

∑
P tYiY

T
i + α1P

t+

α1M
TMP tY Y T + α1β

[
P̂ tY BpY T

P̃ tY Bp
pY

T

])
ij

. (8)

Now both Eq. (6) and Eq. (41) are non-negative update. We prove that the convergence of the updating rule for P andM
can be guaranteed. Detailed proof can refer to the supplementary material (Appendix A).

Discriminative dictionary learning

The discriminative dictionary learning is optimized using a standard iterative optimization procedure that is widely adopted in
sparse coding.

On optimizingX withD,P ,M fixed. WithD,P fixed, the optimization of the JNPDL model becomes

min
X

{
‖PY −DX‖2F +

K∑
i=1

‖PYi −DiX
i
i‖2F + α3‖X‖1

+

K∑
i=1

K∑
j=1,j 6=i

‖DjX
j
i ‖

2
F + α2Tr(XT (L′)X)

} (9)
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Algorithm 1 Training Procedure of JNPDL

Input: Training samples Y = ‖Y1, · · · ,YN‖, intrinsic graph Wc,Wp, penalty graph W p
c ,W

p
p , parameters α1, α2, α3, β, iteration num-

ber T .
Output: Non-negative projection matrix P , dictionary D, coding coefficient matrix X .

Step1: Initialization
1: t = 1.
2: Randomly initialize columns in D0,M0 with unit l2 norm.
3: Initialize xi,1≤i≤N with ((D0)T (D0) + λ2I)

−1(D0)Tyi where yi is the ith training sample (regardless of label).
Step2: Search local optima

4: while not convergence or t < T do
5: Solve P t,M t iteratively with fixed Dt−1 and Xt−1 via Eq. (1).
6: Solve Xt with fixed M t, Dt−1 and P t via Eq. (10).
7: Solve Dt with fixed M t, P t and Xt via Eq. (12).
8: t← t+ 1.
9: end while

Step3: Output
10: Output P = P t, D = Dt and X = Xt.

whereL′ = Lc−Lp
c . Eq. (9) can be solved using feature sign search algorithm [1] after certain formulation based on [7, 3]. We

optimize X class by class. Following [1], we update Xi one by one in the ith class. We define xi,j as the coding coefficients
of the jth sample in the ith class and reformulated the problem as

min
X

{
‖PYi −Dxi,j‖2F + ‖PYi −Dix

i
i,j‖2F

+

K∑
n=1,n6=i

‖Dnx
n
i,j‖2F + α2Q(xi,j) + α3‖xi,j‖1

(10)

where Q(xi,j) = α2(x
T
i,jXiL

′
j + (XiL

′
j)

Txi,j − xT
i,jL

′
jj) in which L′

i is the ith column of L, and L′
ii is the entry in the

ith row and ith column of L. xi,j can be solved via feature sign search algorithm as in [7, 3].
On optimizingD with P ,X,M fixed. By fixing P ,M andX , the JNPDL model is rewritten as

min
D

{
‖PY −DX‖2F +

K∑
i=1

‖PYi −DiX
i
i‖2F

+

K∑
i=1

K∑
j=1,j 6=i

‖DjX
j
i ‖

2
F

} (11)

for which we updateD class by class sequentially. When we updateDv , the sub-dictionariesDi, i 6= v associated to the other
classes will be fixed. Thus Eq. (11) can be further rewritten to

min
Di,i∈{1,2,··· ,K}

{
‖PYi −DiXi‖2F + ‖PYi −DiX

i
i‖2F

+

K∑
j=1,j 6=i

‖DjX
j
i ‖

2
F

} (12)

which is essentially a quadratic programming problem and can be directly solved by the algorithm presented in [5] (update
Di atom by atom). Note that each atom in the dictionary should have unit l2 norm.

Appendix B: Proof of the convergence of updating rules for P andM

Proof. Before proving the convergence of the updating rules, we first introduce some necessary preliminaries.

Definition 1. Function G(A,A′) is an auxiliary function for function F(A) if the conditions

G(A,A′) ≥ F(A), G(A,A) = F(A) (13)

are satisfied.
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Lemma 1. If G(A,A′) is an auxiliary function for F(A), then F(A) is non-increasing toA under the update

At+1 = argmin
A
G(A,At) (14)

where t denotes the tth iteration.

Proof. From Eq.(14), we construct the following relation:

F(At) = G(At,At) ≥ G(At+1,At). (15)

Because G(A,A′) is an auxiliary function for F(A), we can obtain the following inequality from Eq. (13):

G(At+1,At) ≥ F(At+1) (16)

which leads to
F(At+1) ≤ F(At). (17)

Thus F(A) is non-increasing with respect toA under the updating rule in Eq. (14). The lemma is proved

We first consider the scenario when P is fixed. With P fixed, we rewrite the optimization objective (Eq. (10) in the paper)
as

F(M) =α1‖Y −MPY ‖2F + Tr(MGmMT )

+ α1‖M − P T ‖2F
. (18)

We denote Fij as the part of F(M) relevant to Mij , and then compute the first-order and the second-order derivative as
follows:

F ′ij(M) =α1(−2Y Y TP T + 2MPY Y TP T )ij

+ (2MGm)ij + α1(2M − 2P T )ij
, (19)

F ′′ij(M) = 2α1(PY Y TP T +Gm + I)jj (20)

where I denotes an identity matrix with matched size. We construct the function G(Mij ,M
t
ij) as

G(Mij ,M
t
ij) = Fij(M

t
ij) + F ′ij(M t

ij)(Mij −M t
ij)

+
α1(M

tPY Y TP T +M tGm+ +M t)ij
M t

ij

(Mij −M t
ij)

2
. (21)

Lemma 2. G(Mij ,M
t
ij) in Eq. (21) is an auxiliary function for the function Fij(M).

Proof. Because it is easily obtained that G(Mij ,Mij) = Fij(Mij), we only need to prove that G(Mij ,M
t
ij) ≥ Fij(Mij).

We first compute the Taylor series expansion of Fij(M) as

Fij(Mij) =Fij(M
t
ij) + F ′ij(M t

ij)(Mij −M t
ij)

+
1

2
F ′′ij(M t

ij)(Mij −M t
ij)

2
. (22)

Because the following inequalities are satisfied:

(M tPY Y TP T )ij =
∑
v

(
M t

iv(PY Y TP T )vj
)

≥M t
ij(PY Y TP T )jj ,

(23)

(M tGm+)ij =
∑
v

(
M t

iv(Gm+)vj
)

≥M t
ij(Gm)jj ,

(24)

M t
ij ≥M t

ijIjj , (25)

we can let the following relation hold:

α1(M
tPY Y TP T +M tGm+ +M t)ij

M t
ij

≥ (PY Y TP T +Gm)jj .

(26)

Therefore, we can prove that G(Mij ,M
t
ij) ≥ Fij(Mij) holds. The lemma is proved.
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Theorem 1. The updating rule forM can be obtained by minimizing the auxiliary function G(Mij ,M
t
ij).

Proof. We let the derivative of G(Mij ,M
t
ij) with respect toMij equal to zero, namely

∂G(Mij ,M
t
ij)

∂Mij

=
2α1(M

tPY Y TP T +M tGm+ +M t)ij
M t

ij

(Mij −M t
ij)

+ F ′ij(M t
ij).

= 0

(27)

from which we can derive
M t+1

ij = M t
ij

(α1Y Y TP T +M tGm− + α1P
T )ij

(α1M tPY Y TP T +M tGm+ + α1M t)ij
. (28)

which is identical to the updating rule that we use in the paper. Thus the lemma is proved

Then we consider the other scenario whenM is fixed. After updating the matrixM via Eq. (28), we normalize the column
vectorsmi ofM and consequently convey the norm to the projective matrix P , namely

Pi ← Pi × ‖mi‖
mi ←mi/‖mi‖

(29)

where Pi is the ith column vector of the projection matrix P . Considering Eq. (29) and the fixed M , we can rewrite the
optimization objective (Eq. (10) in the paper) as

F(P ) = ‖PY −DX‖2F +
∑
‖PYi −DiX

i
i‖2F+

α1βTr(P̂ Y LpY
T P̂ T ) + α1βTr(P̃ Y Lp

pY
T P̃ T )

+ α1‖Y −MPY ‖2F + α1‖M − P T ‖2F )

. (30)

By denoting Fij as the part of F(P ) relevant to Pij , we have the following derivatives:

F ′ij(P ) = 2(PY Y T )ij − 2(DXY T ))ij + 2(
∑

PYiY
T
i )ij

− 2
∑

(DiX
i
iY

T
i )ij − 2α1(M

TY Y T )ij + 2α1(M
TMPY Y T )ij

+ 2α1β

[
P̂ Y LpY T

P̃ Y Lp
pY

T

]
ij

+ α1(2P − 2MT )ij

, (31)

F ′′ij(P ) = 2(Y Y T )jj + 2(
∑

YiY
T
i )jj + 2α1(M

TM)ii(Y Y T )jj

+ 2α1β

[
Y LpY T

Y Lp
pY

T

]
jj

+ 2α1Ijj
. (32)

The auxiliary function of Fij(P ) is designed as

G(Pij ,P
t
ij) = Fij(P

t
ij) + F ′ij(P t

ij)(Pij − P t
ij)

+

( P tY Y T +
∑

P tYiY
T
i + α1(P

t)+

α1M
TMPY Y T + α1β

[
P̂ tY BpY T

P̃ tY Bp
pY

T

])
ij

P t
ij

(Pij − P t
ij)

2

. (33)

Lemma 3. G(Pij ,P
t
ij) in Eq. (33) is an auxiliary function for the function Fij(P ).

Proof. Because obviously G(Pij ,Pij) = Fij(Pij), we only need to prove that G(Pij ,P
t
ij) = Fij(Pij). We first obtain the

Taylor series expansion of Fij(P ) as

Fij(Pij) =Fij(P
t
ij) + F ′ij(P t

ij)(Pij − P t
ij)

+
1

2
F ′′ij(P t

ij)(Pij − P t
ij)

2
. (34)

Since the following relations hold:
(P tY Y T )ij =

∑
v

(
P t

iv(Y Y T )vj
)

≥ P t
ij(Y Y T )jj

, (35)
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(
∑
i

P tYiY
T
i )ij =

∑
v

(
P t

iv(
∑

YiY
T
i )vj

)
≥ P t

ij(
∑

YiY
T
i )jj

, (36)

(MTMP tY Y T )ij =
∑
v

(
(MTMP t)iv(Y Y T )vj

)
≥ (MTMP t)ij(Y Y T )jj

=
∑
v

(
(MTM)ivP

t
vj

)
(Y Y T )jj

≥ P t
ij(M

TM)ii(Y Y T )jj

, (37)

[
P̂ tY BpY

T

P̃ tY Bp
pY

T

]
ij

=

{ ∑
v

(
P̂ t

iv(Y BpY
T )vj

)
, ifj ≤ q∑

v

(
P̃ t

iv(Y Bp
pY

T )vj
)
, otherwise

≥

{
P̂ t

ij(Y BpY
T )jj , ifj ≤ q

P̃ t
ij(Y Bp

pY
T )jj , otherwise

≥

{
P̂ t

ij(Y LpY
T )jj , ifj ≤ q

P̃ t
ij(Y Lp

pY
T )jj , otherwise

= P t
ij

[
Y LpY

T

Y Lp
pY

T

]
jj

, (38)

P t
ij ≥ P t

ijIjj , (39)

we can have G(Pij ,P
t
ij) ≥ F(Pij). Therefore the lemma is proved.

Theorem 2. The updating rule for P can be obtained by minimizing the auxiliary function G(Pij ,P
t
ij).

Proof. Let (∂G(Pij ,P
t
ij))/(∂Pij) = 0, and we have

2

( P tY Y T +
∑

P tYiY
T
i + α1(P

t)+

α1M
TMPY Y T + α1β

[
P̂ tY BpY T

P̃ tY Bp
pY

T

])
ij

P t
ij

(Pij − P t
ij)

+ F ′ij(P t
ij) = 0

(40)

from which we can derive the updating rule for P

P
(t+1)
ij = P

(t)
ij

(DXY T +
∑

DiX
i
iY

T
i + α1M

TY Y T

+ α1M
T + α1β

[
P̂ tY WpY T

P̃ tY W p
p Y

T

] )
ij( P tY Y T +

∑
P tYiY

T
i + α1P

t+

α1M
TMP tY Y T + α1β

[
P̂ tY BpY T

P̃ tY Bp
pY

T

])
ij

. (41)

Thus the theorem is proved.

According to Lemma 1, Theorem 1 and Theorem 2, we have proved that the convergence of the updating rules for P
andM can be theoretically guaranteed.
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