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Abstract

This paper proposes a novel high-resolution multi-view dataset of complex multi-
illuminant scenes with precise reflectance and shading ground-truth as well as raw depth
and 3D point cloud. Our dataset challenges the intrinsic image methods by providing
complex coloured cast shadows, highly textured and colourful surfaces, and specularity.
This is the first publicly available multi-view real-photo dataset at such complexity with
pixel-wise intrinsic ground-truth. In the effort to help evaluating different intrinsic image
methods, we propose a new perception-inspired metric based on the reflectance consis-
tency. We provide the evaluation of three intrinsic image methods using our dataset and
metric.

1 Introduction
Decomposing an image into its intrinsic components (e.g. reflectance and shading) has al-
ways been a fundamental concept in computer vision research. During the last decades,
intrinsic image research has seen great improvement. While in the early days intrinsic image
was limited to grayscale, in the recent years, performing a joint optimization of colour and
3D surface is proving to produce superior results [2].

New trends in computer vision such as fusion of colour and depth (RGB-D) strongly
benefit from a correct reflectance estimation in multi-view scenes. This task requires an
illumination invariant estimation of reflectance to reproduce the true colour of the surface
despite illumination variation and specularities (Fig 1). Hao Li et al., for example, use
illumination-colour invariant reflectance estimation to produce the correct colour of their
3D model [26]. Furthermore, 3D reconstruction using photo collections deals with internet
photographs captured under varying illumination conditions ([19] [28] [13]). Here produc-
ing the true colour and texture of the surface is highly challenging due to the presence of
shadows and illumination colours which result in strong artefacts unless a correct reflectance
estimation is performed. Therefore, multi-view intrinsic image estimation is desired.
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Figure 1: An example of the multi-view multi-illuminant setup (A-F), rough point cloud (G),
raw depth (H), 3D surface (I), and ground-truth reflectance (J).

The contribution of our work comprises two main parts. Firstly, we introduce a new
stereo and multi-view photo dataset for intrinsic image under multiple coloured (non-uniform)
lights with full precise ground-truth which improves over the state-of-the-art in the following
aspects: a) pixel-wise depth value and dense point cloud. b) highly textured and colourful
objects and background suitable for intrinsic image and colour constancy research. c) multi-
view setup which is especially interesting regarding specularities. Secondly, we propose a
new perception-inspired intrinsic image evaluation metric to better judge the precision of the
recovered reflectance for multi-illuminant scenarios. We also provide the evaluation of three
intrinsic image methods using our dataset and metric. Fig. 1 demonstrates an example of a
scene captured with six different cameras under different illumination conditions along with
its raw depth, point cloud, and a rough surface reconstruction. Here the advantage of using
reflectance instead of the captured pixel colour for the 3D surface colour is evident.

2 Related work

2.1 Intrinsic Image Decomposition
The majority of intrinsic image methods are based on the study of Retinex theory [25]. They
can either use single RGB image or multiple images and video as the input.

Single RGB image: Barrow and Tenenbaum published a method to recover intrinsic
image through edge classification [3]. A similar idea that classifies derivatives of reflectance
changes from shading changes was proposed by Tappen et al. [35]. To strengthen the con-
straints from Retinex theory, different cues are used such as non-local texture [33] or inte-
gration of luminance amplitude, hue and texture [21]. A shadow-free decomposition method
was proposed by Finlayson et al. [12]. In order to improve the performance, sparse re-
flectance prior is used [32], [39]. Some methods use clustering regions of similar reflectance
as constraint automatically [15] or using user’s assistance [9]. A combination of multiple
priors has been proven to greatly improve the results [16], [1]. Serra et al. [31] proposed
a method using surface descriptors on names and shades of colours. Recently, there is an
increasing work of intrinsic image using convolutional neural network [29], [40], [41].
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Multiple RGB images and video: Instead of only using a single RGB image, multiple
RGB images of the same scene under different lighting conditions and/or different view-
points are used in the decomposition [37], [24]. The coherence of the result is reinforced by
the reflectance constancy of the same points in different input images [24]. Intrinsic decom-
position for videos is a challenging task. Besides the ill-posed nature of intrinsic image, it
requires the temporal coherence. Few methods for intrinsic video have been developed in
recent years [38], [7], [23]. The common constraints used in these methods are the spatial
sparse reflectance prior and temporal smoothness.

RGB-D: Another approach to solve the ill-posed problem of intrinsic image decompo-
sition and improve the results is to make use of a depth map in different ways [2], [11], [18],
[34]. Extended from single RGB-D image, Hachama et al. proposed to use single or mul-
tiple RGB-D images from different views [18]. Furthermore, the optimizations for intrinsic
image techniques also improve the depth map [2] and can be used in depth transfer [22]. Shi
et al. also take advantage of intrinsic image estimation with RGB data to recolour, re-texture
and compose objects in a scene [34].

2.2 Datasets
Datasets have been created to evaluate intrinsic image results. They can be synthetic or cre-
ated from real-world photos with single or multiple illuminants and other enriched features.

Synthetic Data: Butler et al. introduced the MPI Sintel dataset [10] originally for eval-
uating optical flow. Besides the ground-truth flow fields, it provides full intrinsics ground-
truth. Barron et al. [2] composed a pseudo-synthetic dataset by enhancing the MIT Intrinsic
Image dataset with depth map and rendering colored illumination. Beigpour et al. [4] pro-
vided full intrinsic ground-truth for rendered multi-illuminant scenes.

Real-world Photographs: One popular real-world dataset is MIT dataset created by
Grosse et al. [17]. It provides full and precise physics-based intrinsic ground-truth. The
scenes are constructed with a single object and white illuminant. Tappen et al. [36] created
a dataset using different types of papers with green marker scrabbles. Therefore, the red
channel was used as the shading ground-truth. A more comprehensive dataset is provided
by Beigpour et al. [5] with full precise intrinsic ground-truth. The dataset captures multiple
illuminants with some specularities and low resolution depth map from a Kinect. For more
natural images, Bell et al. published a large-scale dataset that is annotated by crowd-source,
thus the ground-truth is not available for every pixel [6] and illumination colour is ignored.

2.3 Evaluation Metrics
Many intrinsic image methods use mean squared error (MSE) or local mean squared error
(LMSE) metric to evaluate the results. As Grosse et al. stated in [17], the MSE gives heavy
penalty for a small error in the decomposition results. On the other hand, the LMSE tries
to average out the errors across the whole image by computing the MSE and estimating the
scale factor for individual patches [17]. Therefore, the global consistency on the evaluation is
not enforced. Bell et al. introduced a weighted human disagreement rate (WHDR) metric [6].
The evaluation is based on human judgement on individual pairs of points without ground-
truth. Bell et al. stated that the WHDR has a margin of error of 7.5% . This could potentially
result in the metric being less discriminative for methods with similar performance.
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Figure 2: The five scenes (1 to 5 from left to right) captured by one of the six cameras.

3 Multi-view Dataset and Ground-truth
Inspired by the work of Beigpour et al. [5], we create "multi-illuminant" scenes and compute
their shading and reflectance ground-truth. Here we propose a number of improvements
which we believe extensively boost the applicability of our dataset over existing real-world
intrinsic image datasets: high resolution dense depth image and point cloud, multi-view
setup using 6 cameras, and textured and colourful objects. Fig. 2 shows the 5 scenes from
one of the cameras. In total the dataset consists of 20 illumination conditions, 5 scenes, and
6 cameras. Our complete dataset consists of 600 high-resolution ( 5208× 3476 ) images
along with their ground-truth and is publicly available online1. In the following, we provide
technical information regarding our dataset and well as acquisition of the ground-truth data.

3.1 Scene characteristics and lighting
While the work of Beigpour et al. captured the essence of multi-illuminant condition, the
scenes presented limited colours and virtually no texture. A common shortcoming of physics-
based ground-truth datasets in this research is a lack of colourful and textured surfaces. Many
intrinsic estimation methods therefore based their optimization on sparse reflectance which
displays a limited number of distinct colours. Only few methods have addressed colour
texture [20]. Our dataset contains challenging textures which makes shadow removal more
difficult. We also included objects which present strong colour variations, smooth change
of intensity in reflectance colour, and/or blending of different colours. All of this further
challenge the common assumptions on reflectance.

Furthermore, to challenge the "smooth shading" assumption, we have created complex
multi-illuminant scenarios which result in coloured shadow edges. Moreover, to take ad-
vantage of multi-view setup, we have added more specular illumination conditions since
specularity is view dependent. In total, for each scene, we provide 20 lighting conditions: 4
single-illuminant, 11 multi-illuminant, and 5 specular multi-illuminant2. In order to main-
tain a high Colour Rendering Index (CRI), we use a halogen bulb with a stabilized DC power
supply to avoid changes in the intensity during the capturing. Using a set of broadband filters
we produce a set of distinctly coloured lights.

3.2 Setup
All the 6 cameras are equipped with zoom lens and focus is locked on the middle point of
the scene. A polarizing filter is placed in front of each of the cameras. The cameras in our
setup are operated in Manual mode. The automatic white balance is turned off. In order to
keep the image sharp for the whole scene, we chose a small aperture to increase the depth of
field. We calculate this value based on the distance of the camera to the objects, focal length,

1http://www.cg.informatik.uni-siegen.de/data/iccv2015/intrinsic
2Beigpour et al. have provided 17 illumination condition (only 9 multi-illuminant and 2 specular condition).
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sensor size, and the dimensions of the scene’s volume. To reduce noise, we set the ISO to the
base value which, together with using a small aperture, leads to the need for long exposure
times. As all of our scenes are static and the lighting is stable, this will not lead to artefacts.
We further empirically find appropriate exposure time for each of the lighting conditions in
order to maintain the most number of valid pixels (not too dark or clipped). As camera noise
is unavoidable and very small fluctuations in the light intensity is not impossible we average
several images for each lighting condition and remove the dark current image.

3.3 Intrinsic Ground-Truth Calculation

Real-photo datasets with precise ground-truth are crucial in many computer vision and ma-
chine learning topics especially the field of intrinsic image. Yet there are only few datasets
of such available in this research. The main reason for that is the precise and cumbersome
procedure which is require to create a reliable intrinsic image dataset. This procedure have
first been introduced by Grosse et al. [17] on the basis of the compact form of the image
formation model which is widely accepted in this field3:

I(x) = S(x)R(x)+C(x) , (1)

where S, R, and C are the Shading, Reflectance, and Specular components of the image I
when x indicates pixel coordinates. In the following, we drop the x notation without loss
of generality. This definition has been extended by Beigpour et al. [5] where the shading
component S also represents the illumination colour. In other words, the brightness level
(grayscale) of each pixel in S represents shading and the chromatic value is the illumination
chroma as defined in the field of colour constancy. So far, only few intrinsic image methods
provide colour values for S (e.g, [1]).

We calculate the intrinsic ground-truth for our images by following the standard proce-
dure developed by Grosse et al. Here we briefly discuss the main steps and refer the readers
to their paper for details and proof.

Specular Component: We use cross-polarization technique for obtaining a diffuse im-
age ID by using polarizing filters in front of the light sources and the cameras. Image obtained
without these filters (I) contains specularity. Specular component can then be calculated by
subtracting the diffuse image from the original: C = I− ID

Reflectance: After capturing the scene under the 20 different lighting conditions, we
carefully cover the surface of each object with a very thin and uniform diffuse gray spray
paint. We then recapture each scene and lighting condition with the uniformly gray object.
The image of the gray painted object is proportional to the shading image and is refereed to
as relative shading S̃. Division of the original image by the relative shading image results in
relative reflectance R̃. Therefore, we have R̃ = ID/S̃, where S̃ ∝ S and R̃ ∝ R. Intrinsic image
methods estimate the intrinsic components up to a constant magnitude, i.e. relative shading
and reflectance. Real-capture intrinsic datasets therefore need only to provide the relative
values of shading and reflectance [17]. By definition, the reflectance formula only generates
valid results for pixels whose shading is positive. As low-brightness areas are more prone to
noise, we discard pixels whose brightness is less than a threshold.

3Please refer to [5] and [17] for the full format of the image formation model.
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Alignment: It is crucial to assure that all images of the scene are pixel-wise aligned.
Even a slightest displacement which would result in a sub-pixel shift could falsify the ground-
truth. There’s no straightforward way to correct these errors in post-processing since a small
displacement in object location can possibly result in changes in shadow boundaries. We use
LEGO plates to place the object back on its exact position in the scene after gray-painting.
To assure accuracy, we remove and re-shoot any scene in which there’s a displacement. This
in practice resulted in removing two-third of the captured images.

3.4 Depth and 3D

In the recent years and thanks to the advancements in 3D imaging, a number of intrinsic im-
age methods have been proposed which take advantage of depth information about the image
to improve the estimation accuracy. Such methods have presented results on datasets that are
synthetic [10], their depth information is synthetically estimated [17], or do not provide re-
flectance/shading ground-truth [30]. Beigpour et al. [5] only provides very low resolution
coarse depth information from Kinect Time-of-flight due to the differences between the RGB
and depth camera in both resolution and Field-of-View. This results in their depth image to
be 16 times lower resolution according to their paper.

To solve this issue, we take advantage of stereo setup with active illumination to produce
full resolution dense depth values for each scene. This enables us to provide a dense point-
cloud as well as a 3D mesh. Our camera system setup consists of 3 pairs of cameras (6
in total) whose positions are fixed with relation to each other and the scene. The cameras’
intrinsic and extrinsic parameters are calibrated using a checker board [8]. Each of these
pairs is used to calculate the scene geometry (i.e., depth map and 3D point cloud) in the
stereo manner using standard built-in Matlab functions. To achieve better accuracy for parts
of the scene with less prominent texture, we use active illumination, i.e., a noise pattern
projected on the scene using a projector.

3.5 Discussion

The current dataset, as the only real-photo multi-illuminant and multi-view dataset with ac-
curate intrinsic ground-truth and full resolution depth, offers several important improvements
over the existing work. We plan to further extend this in the future. It is worth noting here
that incorporating each of such features will be highly challenging. For example, outdoor
scenery and illumination is by nature very dynamic as a moving cloud or even a leaf on a
tree would falsify the results. While a crowd sourced labelling approach can be used for
multi-illuminant and outdoor images, the human judgement is subjective and prone to error.
We would also like to create a dataset which provides accurate inter-reflection ground-truth.

4 Point-wise Consistency Metric (PCM)

We propose a new perception-inspired error metric, which is based on CIE Lab colour space
and the standard visual colour difference measurement CIE DE2000 [27], [14], to evaluate
reflectance results generated from intrinsic image methods against the ground-truth. The pro-
posed metric measures the perceptual error of the estimated reflectance without any human
subject input and can hence be easily and automatically calculated for any new dataset.
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Our main inspiration in designing the point-wise consistency metric (PCM) is rooted in
the observation that the quality of an intrinsic image method’s result is proportional to its
reflectance consistency with respect to the ground-truth throughout different illuminations,
strong shadows, and specularity. Here, our notion of reflectance consistency conforms to the
following principles. Firstly, if two points p and q are perceptually similar in the ground-
truth reflectance then they should also be similar in the estimated reflectance. Secondly, the
brightness difference between a pair of points in the estimated reflectance should be similar
to the ground-truth for the same pair.

4.1 Overview
Given the ground-truth reflectance image G and the estimated reflectance image T , our point-
wise consistency metric works as follows:

1. Select a set of point pairs S = {(p,q)} in G that are perceptually similar.

2. Compute the point-wise consistency error PCE(G,T ) as follows:

PCE(G,T ) =
1
|S| ∑

(p,q)∈S
f (pceG,T (p,q)), (2)

f (pceG,T (p,q)) =

{
1, pceG,T (p,q)> σ
pceG,T (p,q)

σ , otherwise
, (3)

pceG,T (p,q) =4E00(G(p)−G(q),T (p)−T (q)), (4)

where 4E00 denotes CIE DE2000 colour distance [27], [14]. pceG,T (p,q) is the difference
between the similarity of the points in the ground-truth and the estimated reflectance for a
pair of points (p,q). f is a linear function to normalize pceG,T (p,q) to [0,1] with a cut-off
threshold σ . The value of σ is set such that there are about 10% of point pairs (p,q) or less
which have pceG,T (p,q) > σ for all the evaluated methods. We do not want to have many
error values that are normalized to 1 because it will make the evaluation between different
methods less distinctive and less accurate.

4.2 Point Selection Strategy
We randomly select pairs of perceptually similar points in the ground-truth image G. For ev-
ery pair, the points are selected in the region of interest and need to be perceptually similar in
colours, taking both chroma and luminance into account. Furthermore, the distance between
two points in a pair also follows a normal distribution.

We define the region of interest to be on object surfaces, at properly lit pixels and not on
objects’ contours or edges. We build the mask M forming the region of interest as below:

M = ero
(
Mscene ∩ Munder-exp)

)
∩ ero(Medges) , (5)

where Mscene,Munder-exp, and Medges are the masks for the scene, the under exposed pixels,
and the edges inside the object, respectively. Mscene is created manually to mask out the
background of the scene. Munder-exp is produced automatically by setting the threshold for
under-exposed pixels. Medges is the edge map computed using Canny edge detection method.
The erosions make sure that selected points are not close to the contours or edges.
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(a) Selected pair points on ground-truth reflectance (b) Selected pair points on estimated reflectance un-
der white illumination

Figure 3: 200 pairs of points selection with the colour difference threshold ε = 10 and the
mean distance between point pairs µd = 20

We select point pairs (p,q) by first randomly select p within the region of interest M.
Point q is selected also inside M with a distance from p that follows a normal distribution,
i.e. ‖p,q‖ is N(µd ,σd). Furthermore, we only accept perceptually similar point pairs, i.e.

4E00(G(p),G(q))< ε , (6)

where ε is set to 10 as we observe that two colours are perceptually similar if their 4E00 is
less than 10.

A note on CIE colour measures

• We use4E00 to measure the similarity between the two selected points in Eq. (6) be-
cause4E00 offers the perceptual uniformity by correcting problems with blue colours
and also improves the performance on gray colours [27]. This point selection criteria
sets the constraint for the first principle of the reflectance consistency to be fulfilled.

• To compute the pair-wise consistency error, we utilize 4E00 creatively in Eq. (4).
One can think of using4E(G(p),G(q)),4E(T (p),T (q)) and compute the difference
between them. However, this straight forward solution results 0 when the colours of
points p and q are swapped between G and T . When combining pceG,T (p,q) in Eq. (4)
with the point selection criteria in Eq. (6), our reflectance consistency principles hold.

4.3 Sampling and Results
In our experiment, we scale the images in the dataset to 1042×696 pixels to reduce the re-
flectance reconstruction time for different evaluated methods. We first start by sampling 500
pairs of points and increase 500 pairs for each iteration. The maximum number of sampling
is 16,000 pairs for an average of 120,000 pixels in the regions of interest M in our dataset.
For p percentile inliers selection, we choose p = 95. In other words, we eliminate 5% of
the highest errors. When the number of samplings is large, this 5% elimination guarantees
there’s no outliers due to noises, but we still have enough number of samplings to fairly eval-
uate the reflectance between different methods. The results analysis in the Fig. 4 shows that
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(a) Scene 5 with green and orange illuminant (b) Scene 2 with white and yellow illuminant

Figure 4: The average point-wise consistency error of scene 5 (a) and scene 2 (b) with the
colour difference threshold ε = 10 and the mean distance between pair points µd = 20

the metric is able to distinct well the performance of different methods on different scenes
with different illumination and is stable when the number of pairs increases to 8.000 and
beyond.

Our point-wise consistency metric (PCM) evaluates the reflectance reconstruction of dif-
ferent methods based on the reflectance consistency principles. The PCM can be extended
to evaluate reflectance at pairs of points that are perceptually different. It is also possible to
develop the error estimation for shading based on this perceptual and statistical approach.

5 Evaluation

Table1 presents evaluation of three intrinsic image methods, namely: Serra et al. [31], Barron
et al. [1], and Gehler et al. [16] using their publicly available codes and default parameters
on a subset of our dataset (i.e. images captured by one of the 6 cameras for all the scenes
and illuminations)4. The goal of this paper is not to compare the performance of all the
existing methods, but rather to demonstrate the application of our dataset and metric. We
further group our illumination conditions to four categories, i.e. easy (whitish), moderately
coloured, hard (strongly coloured), and specular based on their complexity level. Evaluation
is performed using PMC and LMSE. As PCM only evaluates reflectance data, we restrict
LMSE in the same way in order to get comparable results.

To give further insight into the two measures, we pick a sequence of 20 different illumi-
nations for a fixed camera pose for scene 5 (see Fig. 2, right). Fig. 5 compares the evaluation
based on PCM and LMSE and shows the results of all three methods. PCM delivers consis-
tent results ranking the methods’ performance over all 20 illumination conditions. LMSE,
on the other hand, shows large variations across different illuminations. Consulting LMSE
for the 4th illumination , Barron and Gehler are similar and Serra is worse, while for PCM
Serra is better than Barron and both better than Gehler. Visually on Fig. 6, all three meth-
ods deliver imperfect results for this example, but Gehler’s methods appear to yield stronger
color artefacts, e.g., on the bear’s sleeve which PCM accounts for.

4Due to high computation time of the evaluated methods, we scale our images to 20% of their original resolution.
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Figure 5: PCM and LMSE results on scene 5 under 20 different illuminations.

Figure 6: Reflectance results for the three methods on scene 5, 4th illumination.

Evaluation Method easy moderate hard specular Total

PCM
Barron et al. 0.149 0.151 0.157 0.157 0.154
Gehler et al. 0.151 0.154 0.158 0.164 0.157
Serra et al. 0.123 0.125 0.125 0.126 0.125

LMSE (reflectance)
Barron et al. 0.305 0.383 0.485 0.387 0.403
Gehler et al. 0.277 0.341 0.441 0.336 0.360
Serra et al. 0.253 0.300 0.319 0.289 0.296

Table 1: Evaluation of the methods using PCM and LMSE.

6 Conclusions

We contribute to the intrinsic image research a new high resolution multi-view real-photo
dataset with precise pixel-wise reflectance and shading ground-truth. Our dataset presents
challenging surface colour texture and multi-coloured illumination. To the best of our knowl-
edge, the current work is the only real-photo dataset that provides all these features as well
as high resolution depth. We also propose a new perceptually inspired metric to evaluate
the intrinsic methods’ results based on the reflectance consistency principle. We evaluate
three state-of-the-art intrinsic methods on our dataset using LMSE and our proposed PCM
metrics. We believe that our dataset and the PCM metric can help in improving the quality
of intrinsic image methods in complex scenes.
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