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1 Introduction

The supplementary material of our BMVC 2016 submission provides the qualitative results

of our evaluations. In Section 2 we compare our results on the images Art, Books, and Moe-

bius of the noisy Middlebury dataset as proposed by [6] to other state-of-the-art approaches.

Namely, we show results of bilinear upsampling, Yang et al. [8], He et al. [4], Diebel &

Thrun [2], Chan et al. [1], Park et al. [6], Ferstl et al. [3], and of our fully-convolutional

network (FCN) only, as well as of our deep primal-dual network (FCN-PDN).

Similarly, in Section 3 we present our high resolution (HR) depth estimates on the im-

ages Books, Devil, and Shark of the challenging Time-of-Flight dataset ToFMark [3], where

we compare our deep primal-dual network (FCN-PDN) to nearest neighbor and bilinear in-

terpolation, as well as to the approaches by Kopf et al. [5], He et al. [4], and Ferstl et al. [3].
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2 Noisy Middlebury

(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 1: Qualitative results for the image Art from the noisy Middlebury dataset [6] and a

scale factor of ×2. The first image in (a) shows the ground-truth HR depth and the second

image depicts the input sample. In (b)-(l) we present the HR estimates of various methods

and the corresponding error maps.
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(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 2: Qualitative results for the image Books from the noisy Middlebury dataset [6] and

a scale factor of ×2. The first image in (a) shows the ground-truth HR depth and the second

image depicts the input sample. In (b)-(l) we present the HR estimates of various methods

and the corresponding error maps.



4 RIEGLER, FERSTL, RÜTHER, BISCHOF: A DEEP PRIMAL-DUAL NETWORK

(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 3: Qualitative results for the image Moebius from the noisy Middlebury dataset [6]

and a scale factor of ×2. The first image in (a) shows the ground-truth HR depth and the

second image depicts the input sample. In (b)-(l) we present the HR estimates of various

methods and the corresponding error maps.



RIEGLER, FERSTL, RÜTHER, BISCHOF: A DEEP PRIMAL-DUAL NETWORK 5

(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 4: Qualitative results for the image Art from the noisy Middlebury dataset [6] and a

scale factor of ×4. The first image in (a) shows the ground-truth HR depth and the second

image depicts the input sample. In (b)-(l) we present the HR estimates of various methods

and the corresponding error maps.
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(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 5: Qualitative results for the image Books from the noisy Middlebury dataset [6] and

a scale factor of ×4. The first image in (a) shows the ground-truth HR depth and the second

image depicts the input sample. In (b)-(l) we present the HR estimates of various methods

and the corresponding error maps.
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(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 6: Qualitative results for the image Moebius from the noisy Middlebury dataset [6]

and a scale factor of ×4. The first image in (a) shows the ground-truth HR depth and the

second image depicts the input sample. In (b)-(l) we present the HR estimates of various

methods and the corresponding error maps.
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(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 7: Qualitative results for the image Art from the noisy Middlebury dataset [6] and a

scale factor of ×8. The first image in (a) shows the ground-truth HR depth and the second

image depicts the input sample. In (b)-(l) we present the HR estimates of various methods

and the corresponding error maps.
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(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 8: Qualitative results for the image Books from the noisy Middlebury dataset [6] and

a scale factor of ×8. The first image in (a) shows the ground-truth HR depth and the second

image depicts the input sample. In (b)-(l) we present the HR estimates of various methods

and the corresponding error maps.
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(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 9: Qualitative results for the image Moebius from the noisy Middlebury dataset [6]

and a scale factor of ×8. The first image in (a) shows the ground-truth HR depth and the

second image depicts the input sample. In (b)-(l) we present the HR estimates of various

methods and the corresponding error maps.
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(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 10: Qualitative results for the image Art from the noisy Middlebury dataset [6] and a

scale factor of ×16. The first image in (a) shows the ground-truth HR depth and the second

image depicts the input sample. In (b)-(l) we present the HR estimates of various methods

and the corresponding error maps.
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(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 11: Qualitative results for the image Books from the noisy Middlebury dataset [6]

and a scale factor of ×16. The first image in (a) shows the ground-truth HR depth and the

second image depicts the input sample. In (b)-(l) we present the HR estimates of various

methods and the corresponding error maps.
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(a) GT and Input (b) Bilinear (c) Yang et al. [7] (d) He et al. [4]

(e) Diebel & Thrun [2] (f) Chan et al. [1] (g) Park et al. [6] (h) Ferstl et al. [3]

(i) FCN(d(mr)) (j) FCN-PDN(d(mr)) (k) FCN(s) (l) FCN-PDN(s)

Figure 12: Qualitative results for the image Moebius from the noisy Middlebury dataset [6]

and a scale factor of ×16. The first image in (a) shows the ground-truth HR depth and the

second image depicts the input sample. In (b)-(l) we present the HR estimates of various

methods and the corresponding error maps.
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3 ToFMark

(a) GT and Input (b) Nearest (c) Bilinear (d) Kopf et al. [5]

(e) He et al. [4] (f) Ferstl et al. [3] (g) FCN(s) (h) FCN-PDN(s)

Figure 13: Qualitative results for image Books from the ToFMark dataset [3]. The first

image in (a) shows the ground-truth HR depth and the second image depicts the input. In

(b)-(h) we present the HR estimates of various methods and the corresponding error maps.
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(a) GT and Input (b) Nearest (c) Bilinear (d) Kopf et al. [5]

(e) He et al. [4] (f) Ferstl et al. [3] (g) FCN(s) (h) FCN-PDN(s)

Figure 14: Qualitative results for image Devil from the ToFMark dataset [3]. The first image

in (a) shows the ground-truth HR depth and the second image depicts the input. In (b)-(h)

we present the HR estimates of various methods and the corresponding error maps.
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(a) GT and Input (b) Nearest (c) Bilinear (d) Kopf et al. [5]

(e) He et al. [4] (f) Ferstl et al. [3] (g) FCN(s) (h) FCN-PDN(s)

Figure 15: Qualitative results for image Shark from the ToFMark dataset [3]. The first

image in (a) shows the ground-truth HR depth and the second image depicts the input. In

(b)-(h) we present the HR estimates of various methods and the corresponding error maps.
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