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Abstract

The newly proposed correlation filter based trackers can achieve appealing perfor-
mance despite their great simplicity and superior speed. However, this kind of object
trackers is not born with scale and aspect ratio adaptability. To tackle this problem, this
paper integrates the class-agnostic detection proposal method, which is widely adopted
in object detection area, into a correlation filter tracker. Additional optimizations such
as feature integration and proposal rejection are also applied to make detection proposals
more helpful.

To reveal the effectiveness of our approach, two experiments are performed on 28
benchmark sequences with significant scale variation and 14 sequences with obvious
aspect ratio change respectively. Among state-of-the-art trackers and existing scale-
adaptive correlation filter variants, our proposed tracker reports the highest accuracy.
Best accuracy is also achieved on the whole 50-sequence dataset with various challeng-
ing attributes at an average speed of 20.8 FPS, which proves the robustness and efficiency
of our tracker.

1 Introduction
Visual tracking has drawn significant attentions and been studied for several decades because
of its critical role in many application domains such as activity analysis, video surveillance,
human-computer interface and intelligent robotics. Nonetheless, it remains a challenging
problem due to baffling factors in various tracking circumstances, including illumination
variation, scale variation, non-rigid deformation, occlusion, etc. [19, 26].
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Generally, an object tracker composes of four modules: object description, observation
model, motion model and model updating scheme. Recently, instead of the intuitive holis-
tic description[8, 15, 20], local representation scheme[17, 22, 27] has been proposed to
make object descriptions more flexible and robust. Various kinds of features such as color
naming[8, 9, 21], color histogram[5] and histogram of oriented gradients (HOG)[6, 7, 15,
21], are also utilized in object description. There are two kinds of observation models, gen-
erative model[17, 20, 22] and discriminative model[12, 15, 18], the latter of which is proved
to be more effective since the difference of target and background is explicitly considered.
Many motion models are presented to cover the sophisticated motions of target, such as im-
plicit motion model [22], particle filtering[17, 25, 27], dense sampling[7, 15, 21], Markov
Chain Monte Carlo[20] and combination of tracking and detection[18]. While early track-
ers do not update their models during tracking, modern trackers usually adopt appropriate
updating schemes, varying from simple linear interpolation[14, 15, 21] to iterative learning
using bootstrapping[18, 24].

Among more complicated trackers, recently proposed correlation filter based trackers[2,
7, 8, 14, 15, 21] have achieved appealing performance despite their great simplicity and
superior speed. Those trackers train a discriminative filter, where convolution output can
indicate the likeness between candidate and target. Because the element-wise operation
in Fourier domain is equal to the convolution operation in time domain (spatial domain
in tracking), they evaluate the cyclically shifted candidates very efficiently. However, the
filter input is a bounding box of fixed size, so they are not born with the adaptability to
target’s scale and aspect ratio changes. Although scale-adaptive variants[7, 21] have been
proposed, they are not flexible enough due to pre-defined sampling manners. Moreover, to
the best of our knowledge, no correlation filter variant has been proposed to handle aspect
ratio variation.

In object detection area, recent detection systems with top performance[11, 13] all em-
ploy detection proposal generators[16] for picking out candidate regions that may con-
tain an object from the input image. Detection proposals can not only avoid performing
classification on numerous windows, but also improve detection quality by reducing false
positives[16]. In this paper, EdgeBoxes[28] is chosen to be a part of our tracker because of
its reasonable performance and applicability in tracking task.

The tracker proposed in this paper is based on KCF[15], which is responsible for the
preliminary estimation of target location. Then EdgeBoxes[28] is employed to search for
proposals nearby, and those proposals are further evaluated and used to determine the final
position, scale, and aspect ratio of target. The contribution of this paper is two-fold. Firstly,
we integrate a class-agnostic detection proposal method into a correlation filter tracker. Sec-
ondly, several optimizations such as feature integration, robust updating, and proposal rejec-
tion are performed to guarantee the efficient collaboration of the two parts. Based on the
benchmark protocol and dataset from [26], two experiments are performed on 28 benchmark
sequences with significant scale variation and 14 sequences with obvious aspect ratio change
respectively. An experiment on the whole 50-sequence dataset with various challenging at-
tributes is also conducted. Our tracker reports the highest accuracy in all the experiments
comparing with state-of-the-art trackers and existing scale-adaptive correlation filter vari-
ants, while running efficiently at an average speed of 20.8 frames per second (FPS).
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2 Related Work

2.1 On Correlation Filter Based Trackers

Correlation filer based trackers adopt dense sampling as their motion model, which usually
determines their adaptability to target’s scale and aspect ratio variation. The MOSSE[2]
tracker takes randomly affine-transformed ground truths as training set when initializing its
correlation filter. But during tracking, the scale and aspect ratio of bounding box keep un-
changed and the correlation filter is only used to detect the position of target. The KCF[15]
tracker, as an extended version of CSK[14], achieves high efficiency by making use of the
circulant structure within training samples. It also enhances the conventional correlation fil-
ters with kernel trick and supports multi-channel features, while the scale and aspect ratio
problem remains unresolved. As another fixed-scale extension to CSK, ACT[8] utilizes color
naming feature with feature compression and presents a more robust updating scheme.

SAMF[21] extends KCF to handle scale changes by sampling with several pre-defined
scale perturbations. The correlation filter is then applied to those samples individually to
find out the best scale and target position. DSST[7] combines two separate correlation filters
together, a MOSSE based filter for target translation estimation and an one-dimensional
correlation filter for scale estimation. Every time after a target position is found by the first
filter, image patches with several pre-defined scale variations are extracted to form a scale
pyramid, which is utilized by the second filter for scale detection. Comparing the scale
detection method of DSST and SAMF, that of DSST is more accurate and fast, because the
discriminative scale filter can explicitly model the likelihood of different scales as well as
benefit from the reduced computation load in Fourier domain. However, those two scale-
adaptive correlation filter variants are still unable to handle aspect ratio changes. And by
sampling pre-defined scale variations, they are not flexible enough to deal with fast and
abrupt scale changes.

2.2 On Detection Proposal Generators

There are now generally two types of detection proposal generators, namely grouping method
and window scoring method[16]. As a typical grouping method, SelectiveSearch[23] merges
super pixels to generate detection proposals according to a similarity function. CPMC[3]
produces proposal regions by selecting and ranking image segments generated with graph cut
based on their mid-level region properties. Window scoring methods often generate dense
candidate windows, and score them according to their likelihood of containing an object.
Objectness[1] samples initial proposals from salient locations, then scores them by combin-
ing diverse cues in a Bayesian framework. Bing[4] trains a generic objectness measure using
the norm of gradients as feature, and detects proposals in a sliding window manner.

EdgeBoxes[28] is adopted in this paper to enable the scale and aspect ratio adaptability of
our tracker. It assumes that the number of contours that are wholly contained in a bounding
box is indicative of the objectness. Several advantages make it the most suitable proposal
generator in a tracking framework. Firstly, it is fast enough considering the smaller detection
scope (near the previous target position) in a tracking task and provides reasonable proposal
quality. Secondly, no need of learned parameters guarantees its feasibility in generic object
tracker. Thirdly, contours as the objectness measurement are also hints of the whereabout
and size of the tracked target. Last but not least, it provides plenty of parameters that can be
tuned to explicitly control the searching manner and scoring criterion.
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3 Building Blocks

3.1 Tracking with Kernelized Correlation Filter
As the basis of our tracker, KCF trains a linear model f (z) = 〈w,z〉, which indicates the
probability of image patch z being the tracked target, by solving a Ridge Regression problem:

min
w ∑

m,n
( f (xm,n)− ym,n)

2 +λ ‖w‖2 . (1)

Here 〈〉 represents the inner product, w is the model parameter matrix, and xm,n denotes each
image patch used to train the model. λ is a regularization parameter that penalizes overfitting.
Regression target ym,n is the desired output of f (xm,n). In KCF, xm,n is a patch containing
the target but cyclically shifted by m−1 pixels vertically and n−1 pixels horizontally, and
all the ym,ns form a Gaussian shaped matrix y with its peak cyclically shifted to the top-left
element (y1,1 = 1). This is because y1,1 corresponds to the unshifted target patch x1,1.

To utilize Gaussian kernel and reformulate the Ridge Regression problem in dual space,
the model can be rewritten as:

f (z) = 〈w,z〉= ∑
m,n

αm,n 〈z,xm,n〉= ∑
m,n

αm,n g(z,xm,n) , (2)

where g() denotes the Gaussian kernel function and takes the place of inner product. By
making use of the circulant structure among xm,ns and the convolution theorem, the solution
to the Ridge Regression problem is:

α̂ =
ŷ

k̂x1,1x1,1 +λ
. (3)

Here ˆ denotes the DFT transformation and α is a matrix consisting of coefficients αm,n. k
represents the kernel correlation operation defined as:

kx′x′′ = exp
(
− 1

σ2

(∥∥x′
∥∥2

+
∥∥x′′

∥∥2−2F−1
(

∑
c

x̂′∗c · x̂′′c
)))

, (4)

where σ is the bandwidth of Gaussian kernel, F−1 denotes the inverse DFT and ∗ refers to
complex conjugation. The subscript c here means the cth channel of the image feature patch.
All arithmetic operations including exp are performed element-wisely. Eq.3 can be used to
initialize the coefficient matrix in dual space. To detect the target location within a patch z,
KCF uses:

f̂(z) = k̂xz · α̂, (5)

where matrix f now contains the output of model f () for all cyclic shifts of z. The location
of the maximum element in f corresponds to the cyclic shift of z that is most similar to
the current target appearance x. Since the coefficient matrix α and the target appearance
x determine the linear model f () together, they are referred to as “model” for short in a
correlation filter based tracker.

3.2 Generating Detection Proposals using EdgeBoxes
EdgeBoxes firstly computes an edge response for each pixel in the input image using the
Structured Edge detector[10]. Then it traverses the whole image in a sliding window manner
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and scores every sampled bounding box. There are several parameters controlling the search-
ing manner of sliding window. The stepSize is the intersection over union (IoU, which is the
intersection area of two boxes divided by the area of their union) between two neighboring
boxes, which determines the sampling density. The aspect ratio range considered in sliding
window search is between 1/maxAspectRatio and maxAspectRatio, and the minimum box
area is bounded by minBoxArea.

The score for a bounding box b is determined as:

hb =
∑i∈b wimi

2(bw +bh)κ
−

∑p∈bin mp

2(bw +bh)κ
, (6)

where the edge response magnitude of a pixel is denoted by m, and each i corresponds to a
pixel within b. bw and bh are b’s width and height, while bin denotes the central part of b,
whose size is bw/2×bh/2. wi ∈ [0,1] is a weight indicating how likely the contour that pixel
i belongs to is wholly contained in b, and higher wi means higher confidence. Since boxes
of larger size averagely contain more contours, κ is set to penalize the large boxes.

After scoring each bounding box, all the boxes with score above minScore are recorded
and further refined. Finally the refined boxes are filtered by non-maximal suppression (NMS),
where a box is removed if there is another box with higher score and their IoU is higher than
a threshold β . The NMS stage will end when the number of passed boxes reaches maxBoxes
or all the boxes are filtered.

4 Our Approach

4.1 Feature Integration and Robust Updating
Since the integration of detection proposals induces more flexibility of candidate patches,
namely different scales and aspect ratios, the number of distracting candidates will be raised.
Therefore, we need a more precise and robust discriminative correlation filter to find out the
best candidate. To improve precision, we extend the HOG feature used in original KCF to
a combination of HOG, intensity, and color naming, similarly to SAMF[21] and ACT[8]
but without feature compression. By simply concatenating the three features, the integrated
feature patch now has 42 channels and can be used in training and detecting according to
Eq.4.

The utilization of simple linear interpolation as model updating scheme in KCF is proved
to be sub-optimal[8], because only the current frame is taken into account while updating the
model, and the contribution of previous frames in model fades out too fast exponentially. To
make KCF more robust, our tracker adopts the updating scheme presented in ACT instead,
which considers the target patches in current frame and all previous frames simultaneously.
Note that although previous target patches are explicitly considered, they are implicitly en-
coded into the scheme, so that the derived updating formula only requires the current target
patch as follows. In each new frame indexed by i, after a patch xi containing the target is
detected, the numerator and denominator of the coefficient matrix α̂ are updated separately
to reproduce a new one:

α̂N = η k̂xixi · ŷ+(1−η)α̂N ; α̂D = η k̂xixi · (k̂xixi +λ )+(1−η)α̂D. (7)

Here α̂ = α̂N/α̂D, and η is the learning rate. The target appearance x is still updated by
linear interpolation: x = ηxi +(1−η)x. For detailed rationales and derivations, please refer
to [8].
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4.2 Integrating Detection Proposals into Tracking

After modifying KCF, we will show how to integrate detection proposals by illustrating the
tracking pipeline. While initialing, given the target ground truth of size w1×h1 centered at
location l1 in the first frame, the coefficient matrix α is initialized with a patch x1 centered
at l1 but of size sdw1× sdh1. Here sd is a scaling factor reasonably larger than 1 to contain
some context information. The target appearance x is initialized to x1 directly.

During tracking, when a new frame indexed by i comes, the detection of KCF is per-
formed on a patch zd extracted from current frame, whose center locates at li−1 and size is
sdwi−1× sdhi−1. Since the detected target varies in scale and aspect ratio, our tracker resizes
the patch zd to sdw1× sdh1 by bilinear interpolation before applying Eq.5. The new target
location ldi can be estimated according to the maximum element position in f. Value of the
maximum element is recorded and denoted as v.

Then EdgeBoxes is performed on a path zp centered at ldi of size sewi−1× sehi−1. The
scaling factor se here can be smaller than sd by assuming scale variation is smaller compared
to translation. The output of EdgeBoxes can be numerous bounding boxes sorted by their
scores. We only take the top 200 proposals and further filter them with proposal rejection:
for each proposal, if the IoU between it and the current detected target, which is a box at ldi of
size wi−1×hi−1, is higher than 0.9 or lower than 0.6, the proposal will be rejected. Proposals
above the upper threshold 0.9 are almost the same as the current detected target, and those
below the lower threshold 0.6 are very likely to be false proposals or contain other objects
than the target.

With proposals accepted after rejection, we still need to evaluate them to find out the
most promising candidate. For every accepted proposal box, we extract its corresponding
patch p from current frame with the scaling factor sd . Since p can be of any size, it is resized
to sdw1× sdh1 before evaluation, so that the model, α and x, can be applied. To evaluate a
proposal, we use:

f (p) = sum(kxp ·α), (8)

where sum() means the summation of all the elements in a matrix, and f (p) which holds the
same meaning as in Eq.2, is a scalar indicating the similarity between p and target appear-
ance x. Because we only need to evaluate the proposal itself but not its cyclic shifts, Eq.8
is actually the Eq.5 in spatial domain. After evaluating all the proposals, we find out the
proposal with maximum f , namely fmax, and denote its center location and size by lp

i and
wp

i ×hp
i respectively.

If fmax is smaller than v, which means the most promising proposal is not as precise as
the bounding box found by KCF, we abandon the proposal, set the new target center li to ldi
and keep the target size wi×hi unchanged as wi−1×hi−1. If the proposal is more promising,
location and size are updated with a damping factor γ:

li = ldi + γ(lp
i − ldi ); (wi,hi) = (wi−1,hi−1)+ γ((wp

i ,h
p
i )− (wi−1,hi−1)). (9)

To update with damping can prevent the location and size from varying abruptly, which
results in more robust tracking.

At the new target location li, an sdwi× sdhi patch xi, which contains the target in current
frame, is extracted and used to update coefficient matrix α and target appearance x according
to Eq.7. Then we start a new iteration for the next frame. Our proposed tracking process is
listed in Algorithm 1.
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Algorithm 1 Iteration on the ith frame.
Inputs:

Fi: image frame.
(li−1,wi−1,hi−1): estimated bounding box tightly enclosing the target in previous frame.
α , x: previous model (coefficient matrix and target appearance).

Outputs:
(li,wi,hi): estimated bounding box tightly enclosing the target in current frame.
α , x: model overwritten by updating.

Preliminary translation estimation:
1: Extract a patch zd in (li−1,sdwi−1,sdhi−1) from Fi.
2: Detect a new center location ldi with zd , α and x using (5).

Scale and aspect ratio estimation:
3: Extract a patch zp in (ldi ,s

ewi−1,sehi−1) from Fi.
4: Apply EdgeBoxes to zp and get a set of proposal bounding boxes P according to sec. 3.2.
5: Use proposal rejection to filter P[1, · · · ,200] and get P′.
6: Evaluate every proposal in P′ with α and x using (8), and get the proposal box (lp

i ,w
p
i ,h

p
i ) with

maximum correlation response.
7: Get (li,wi,hi) by updating with damping using (lp

i ,w
p
i ,h

p
i ), (wi−1,hi−1), ldi and (9).

Model update:
8: Extract a patch xi in (li,sdwi,sdhi) from Fi.
9: Update α and x with xi using (7).

5 Experiments

5.1 Parameter Setup
In the correlation filter part of our tracker, most of the parameter settings such as sd = 2.5
remain the same as those in KCF, except the standard deviation of the regression target matrix
y and the learning rate η in Eq.7. The smaller the former parameter is, the sharper the peak
of y will be, resulting in a more strict discrimination rule. So we decrease it reasonably to
the target size multiplied by 0.06 to fit for our more precise feature. The latter η is also
decreased to 0.01 since the integrated feature is of stronger invariance against appearance
change. We set se to 1.4 so that EdgeBoxes is performed on a patch slightly larger than the
current target. For EdgeBoxes itself, we adopt the parameter setup for expected IoU of 0.7
with some modification, that the minimum proposal area and aspect ratio range for sliding
window are set dynamically according to the current target size (wi−1,hi−1):

minBoxArea = 0.3×wi−1×hi−1; maxAspectRatio = 1.5×max(
wi−1

hi−1
,

hi−1

wi−1
). (10)

Parameter settings above will accelerate EdgeBoxes dramatically and produce much less
unnecessary proposals. The scale penalization exponent κ in Eq.6 is decreased to 1.4 because
the target commonly forms the majority of EdgeBoxes’ input patch, and we need to alleviate
the penalization on larger proposals. The damping factor γ in Eq.9 is set to 0.7 empirically.

5.2 Evaluation
We name our proposed tracker “KCFDP” (Kernelized Correlation Filter with Detection Pro-
posal) and implement it in Matlab. The dataset adopted to evaluate our KCFDP is from [26],
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KCFDP   KCF   DSST   SCM   Struck

Figure 1: A visualized comparison of our tracker with four state-of-the-art trackers. The
frames are from Liquor, Skating1, Tiger1 and Freeman4 respectively from top to bottom.

which consists of 50 sequences with many challenging attributes. We are not to use some
common performance criteria such as average center location error (CLE) because they pe-
nalize lost trackers randomly. Instead, we follow the evaluation protocol proposed in [26]
and utilize distance precision (DP) and overlap precision (OP) to evaluate our tracker. We
provide two kinds of plots: Precision Plot that indicates the ratio of frames with CLE below
a certain threshold, where trackers are ranked using a threshold of 20 pixels, and Success
Plot that indicates the percentage of frames with IoU larger than a threshold comparing to
ground truth, where trackers are ranked using the area under curve (AUC).

All the 29 trackers from [26], including state-of-the-art trackers such as SCM[27], Struck
[12], TLD[18], VTD[20] and ALSA[17], are used to compare with KCFDP. Five correla-
tion filter trackers are also included in comparison, namely KCF[15], DSST[7], ACT[8],
SAMF[21] and CKCF. Here CKCF is our proposed tracker without detection proposal gen-
erator.

An intuitive visualized comparison on four very challenging sequences can be found in
Fig.1, which shows our tracker can preferably adapt to the scale and aspect ratio change of
target while keeping high precision.

5.2.1 Evaluating the scale and aspect ratio adaptability

Video sequences from [26] are annotated with attributes. We adopt the 28 sequences an-
notated with “scale variation” to evaluate the scale adaptability of KCFDP. Moreover, we
additionally annotate 14 sequences (Soccer, Matrix, Ironman, Skating1, Shaking, Couple,
Girl, Walking2, Walking, Freeman3, Freeman4, Skiing, MotorRolling, Woman) with “aspect
ratio variation” according to the following criterion. For each frame, comparing the current
target aspect ratio with the ratios in its 30 previous frames, if the relative aspect ratio varia-
tion exceeds the range between 1/1.4 and 1.4, we consider this frame as “undergoing aspect
ratio change”. If a sequence has more than 10% frames undergoing aspect ratio change, it
is annotated with “aspect ratio variation”. Those sequences, which contain 1017 frames un-
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dergoing aspect ratio change out of 4560 total frames, are used to evaluate the aspect ratio
adaptability of our tracker.

Resultant Precision Plots and Success Plots are shown in Fig.2, which shows our tracker
is superior in both scale and aspect ratio adaptability comparing to other trackers.

Figure 2: Evaluations for scale (upper) and aspect ratio (lower) adaptability (only the top 10
trackers are presented for clarity).

5.2.2 Evaluation on the whole dataset

To further evaluate the robustness and efficiency of our KCFDP, we set up a comparison on
the whole 50 sequences (including 51 tracking targets) with challenging attributes such as
illumination variation, occlusion, motion blur and background clutter. Result is shown in
Fig.3, where KCFDP outperforms all the other trackers and correlation filter variants.

In addition to high accuracy, KCFDP runs efficiently at an average speed of 20.8 FPS
over the 50 sequences on an Intel i5-4278U CPU. As a comparison, the two scale-adaptive-
only correlation filter variants, DSST and SAMF, report 28.9 FPS and 12.0 FPS respectively
under the same configuration. Our tracker is time-efficient because only a small number of
promising detection proposals are actually been evaluated after rejection, and the proposal
generator is well-tuned to be integrated.

By looking into the results further, we can see the performance gaps between KCFDP
and CKCF in both Fig.2 and Fig.3, which clearly shows the accuracy gain via integrating
detection proposals into tracking process. Although CKCF and KCF exhibit inconspicuous
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Figure 3: Evaluation on all the 50 sequences (only the top 10 trackers are presented for
clarity).

performance difference on “scale variation” subset and the whole dataset, the accuracy im-
provement can be clearly perceived on “aspect ratio variation” subset. Thus we can deduce
that the integration of features will only show its superiority when discriminating candi-
date patches with intensive changes, which also motivates us to utilize integrated feature in
KCFDP where candidates’ scales and aspect ratios change constantly. Moreover, KCFDP is
of greater advantage on “aspect ratio variation” subset comparing to that on the other two
datasets. The reason is that there are multiple challenging attributes within each sequence,
and some attributes such as motion blur that makes target contours fuzzy, will punish the
proposal generator and cancel out some improvement. As for “scale variation” subset, track-
ers such as DSST and SAMF have introduced specific scale-adaptive techniques and been
well-tuned, thus KCFDP reports less superiority.

6 Conclusion

In this paper, an innovative approach is presented to enable scale and aspect ratio adaptability
in visual tracking. We adopt a class-agnostic detection proposal generator, which is tuned
and coupled with proposal rejection to provide promising candidates with different scales
and aspect ratios. It is then integrated into a correlation filter tracker modified with enhanced
feature and robust updating.

Benefiting from the high flexibility of detection proposals and the precise discrimination
of correlation filter, our proposed approach proves its robustness and adaptability to scale
and aspect ratio variation on a challenging 50-sequence dataset and its two subsets. As a
generic approach, we plan to incorporate different kinds of proposal generators and trackers
in future work.
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