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Abstract

Correlation filter based tracking has attracted many researchers’ attention in recent
years for high efficiency and robustness. Most existing works focus on exploiting dif-
ferent characteristics with correlation filters for visualtracking,e.g. circulant structure,
kernel trick, effective feature representation and context information. However, how to
handle the scale variation and the model drift is still an open problem. In this paper, we
propose a collaborative correlation tracker to deal with the above problems. Firstly, we
extend the correlation tracking filter by embedding the scale factor into the kernelized
matrix to handle the scale variation. Then a novel long-termCUR filter for detection
is learnt efficiently with random sampling to alleviate model drift by detecting effec-
tive object candidates in the collaborative tracker. In this way, the proposed approach
could estimate the object state accurately and handle the model drift problem effectively.
Extensive experiments show the superiority of the proposedmethod.

1 Introduction

Visual tracking is a fundamental problem in computer vision. It refers to the task of generat-
ing the trajectories of the moving objects and has many applications including surveillance,
autonomous driving and image guided surgery. Numerous methods have been dedicated
to generating an object trajectory by computing the translation of the object in consecutive
frames, among which the correlation filter method is one of the most common methods re-
cently [3, 6, 11, 14, 18, 38]. The popularity of the correlation filter method is due to its
simplicity, high efficiency and robustness.

Correlation filter is to evaluate the similarity degree by computing the dot product for
each possible alignment of one learned template (or filter) relative to a test image. After its
first introduction (i.e. Person’s Correlation) by Galton in1888 [5], it has been adopted to
solve various computer vision problems, such as object detection and recognition [12, 20],
pose detection [13], and object tracking [3]. The computation of correlation filters can be
speeded up by using the convolution theorem, which states that the convolution of two func-
tions in the spatial domain can be computed in the Fourier domain as the element-wise
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multiplication of the Fourier Transform of those two functions. Due to its computation-
al efficiency, correlation filters have attracted much attention recently for visual tracking
[3, 6, 7, 14, 15, 35]. Despite its good performance, most of these correlation methods have
two main limitations, the first is how to adjust the object scale efficiently. In order to con-
sistently track the object, Danelljanet al. [6] proposed a separate 1-dimensional correlation
filter to estimate the target scale, but they only use the original feature space as the object
representation. In this paper, we propose a multi-scale kernelized correlation filter as our
tracking filter by embedding the scale variation into the kernelized correlation filter while
forming a separate pyramid of object representation. In addition, the use of adaptive learn-
ing rate based on failure detection is helpful for online learning a robust tracking filter.

The second limitation is how to handle the model drift problem caused by the long-term
occlusion or out-of-view, which is a very important problemfor online tracking [23]. One
common mechanism is to introduce a detection module which can select some effective can-
didates to rectify the base correlation tracker. In this paper, we design a novel online CUR1

filter for detection. CUR matrix approximation computes thelow rank approximation of a
given matrix by using the actual rows and columns of the matrix and have been studied in
the area of theoretical computer science for large matrix approximation [8]. In the long-term
tracking process, all of the historical object representations can form a large data matrix for
the current frame which fits for the CUR theory. The large datamatrix can be fast approxi-
mated by online CUR for representing the intrinsic object structure. In this work we develop
an online CUR for learning an online detection filter by random sampling. The online CUR
filter can not only exploit the low rank property of object representation [37] in the spatial-
temporal domain of tracking, but also project the representation matrix of historical objects
into a subspace with error upper bound so as to achieve a robust object representation. The
low rank property of object representation is prevalent in long-term tracking and could be
used to alleviate the model drift.

The main contributions of this work are summarized as follows:

• An efficient online CUR filter for detection is first proposed by preserving the low rank
counterparts of long-term object representation, which has an error upper bound and
can be computed efficiently.

• A novel collaborative correlation tracker is proposed to jointly capture the target ap-
pearance by multi-scale kernelized correlation filter and exploit the long-term object
representation by the learned CUR filter.

2 Related Work

Visual tracking has been studied extensively by many researchers over the years due to its
importance. While a comprehensive review of the tracking methods is beyond the scope
of the paper, please refer to [22, 33] for a survey, and also to [19, 24, 26, 27, 31] for some
empirical comparisons. In this section, we introduce some works closely related to this work:
correlation filter based tracking and tracking-by-detection approaches.

Correlation filters have been widely studied in the field of visual tracking. Bolmeet al.
[3] modeled the target appearance by an adaptive correlation filter which was optimized by

1CUR approximation of a matrix A consists of three matrices, C, U, and R, where C is made from columns of
A, R is made from rows of A, and that the product CUR closely approximates A.
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minimizing the output sum of squared error (MOSSE). The convolution theorem can be used
with correlation filters to accelerate tracking. Circulantstructure with kernels tracker (CSK),
proposed by Henriqueset al. [15], exploited the circular structure of adjacent subwindows
in an image for quickly learning a kernelized regularized least squares classifier of the target
appearance with dense sampling. Kernelized correlation filters (KCF) [14] was an extended
version of CSK by re-interpreting correlation tracking using the kernelized Ridge regression
with multi-channel features. Danelljanet al. [7] introduced color attributes to improve track-
ing performance in colorful sequences and then proposed theDSST tracker [6] with accurate
scale estimation by one separate filter. Zhanget al. [35] utilized the spatial-temporal context
in the Bayesian framework to interpret correlation tracking. In a word, all of them attempt
to exploit different characteristics with correlation filters for tracking,e.g. circular structure
[15], kernel trick [14], color attributes [7], effective feature representation (e.g. HOG) [6, 14],
the consistency of object representation in scale space [6], and context information [35].

To leverage the stability and plasticity residing online update in visual tracking, Kalalet
al. [18] proposed a unified tracking-learning-detection (TLD) framework where short-term
tracker and long-term online detector help each other by exploring the structure of unlabeled
data, i.e. the short-term tracker provides high confident samples to train and update the de-
tector, and the detector re-initializes the short-term tracker when it fails. Hareet al. [11]
proposed structure SVM by exploring the spatial label distribution of the training samples as
the intrinsic relative structure, which alleviated the problem of label prediction about noise
samples (i.e. label ambiguity). Zhang and van der Maaten [36] proposed a structure preserv-
ing model with graphical structure in the tracking-by-detection framework which handled the
model drift problem in some extent. Danelljanet al. [6] proposed a separate 1-dimensional
correlation filter to estimate the target scale in an image efficiently. Henriqueset al. [14] pro-
posed a circular structure correlation filter tracker with kernel and interpreted the correlation
tracking as a ridge regression problem which can explore thespatial label distribution with
dense samples. Inspired by the above trackers, in this work we embed the scale estimation
[6] into kernelized correlation filter tracker [14] as our multi-scale kernelized correlation fil-
ter tracker and propose a novel online CUR filter for detection. Due to the computational
efficiency of correlation filter, the spatial label distribution by circular structure, accurate
multi-scale object representations with scale estimation, and an online detection filter, the
proposed tracker effectively handles the problems of labelambiguity, scale variation, and
model drift existing in online tracking.

3 Collaborative Correlation Tracking

3.1 Multi-scale Kernelized Correlation Tracking (MKC)

The common idea of the correlation filter-based trackers [3, 6, 7, 14, 15, 35] is to train a
discriminative correlation filter on a set of observed sample patches. The discriminative cor-
relation filter is trained with a training sample patchX in the Fourier domain in the first
frame. Then it is applied to estimate the target state in the sequential frames. After the
target state is predicted, the discriminative correlationfilter will be updated in each frame.
Each training sampleX in conjunction with a desired correlation output or probability label
distributionY in the Fourier domain is used for learning or updating the filter. The opti-
mal kernelized correlation filterH in the Fourier domain with a fixed initialized sizesinit is
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obtained by minimizing the following cost function,

ε = ‖F−1(H ◦ϕ(X ;sinit ,scur)−Y)‖2+λ‖F−1(H)‖2
, (1)

where◦ is Hadamard product operator.scur is the size of the training sample in the curren-
t frame. ϕ(X ;sinit ,scur) is a mapping function for transforming the feature representation
X with sizescur into another feature representation with sizesinit by preserving the consis-
tency of multi-scale object representations in scale space. λ is a regularization parameter
that controls overfitting.‖ · ‖ is Frobenius norm.F(·) andF−1(·) are the discrete Fourier
transform and the inverse discrete Fourier transform function, respectively. For simplicity,
we denoteϕ(X ;sinit ,scur) asϕ(X). To estimate the object scale, multi-scale object repre-
sentation similar to [6] is built independently while the predicted scale factor isembedded
in Kernelized correlation filter. Therefore, the integrated tracker is denoted as multi-scale
Kernelized correlation tracking.

Similar to [6], we decompose multi-scale kernelized correlation tracking into two sep-
arate filters for translation and scale estimation. Different from [6], which only used the
original feature space as the object representation, we represent the object with kernel fea-
ture space and extend kernelized correlation filter with a scale factor. Based on kernel trick
[25] and circular structure [15], Henriqueset al. [14] proposed kernelized correlation filters
for visual tracking which allowed more flexible, non-linearregression functions integrating
with multi-channel features. Due to the characteristic of the kernel trick, the model optimiza-
tion is still linear in the dual space even if with a differentset of variables. Danelljanet al.
[6] proposed a separate 1-dimensional correlation filter to estimate the target scale. Inspired
by [14] and [6], we propose a multi-scale kernelized correlation filter which embeds the s-
cale variation into the kernelized correlation filter. The multi-scale kernelized correlation
tracking filterH can be represented as:

H =
Y Φ(ϕ(X))

K(ϕ(X),ϕ(X))+λ
, (2)

whereΦ(·) is a feature mapping function to compute the kernel matrixK(·, ·) in Fourier
space andX is the feature representation of the training sample in the Fourier domain.

With the guarantee of the consistency of object representation in scale space, we can
scale the object representation without large loss of the intrinsic object structure. Therefore,
to reduce the computational complexity and preserve the coherence of object representation
in different scales, we resize the current training sample of scalescur to the initial scalesinit

so that the feature dimension of the object filterH is consistent in the whole tracking process.
The current scalescur is achieved independently by a feature pyramid convolutionor a sepa-
rate scale estimate filter similar to [6]. Therefore, our multi-scale kernelized correlation filter
tracker has the characteristics of scale estimation and kernel trick, where the optimal scale
scur can be achieved by scale estimation and multiple channel features can be embedded by
kernel trick naturally.

During the tracking process, the coefficientsΓ of kernelized regularized Ridge regression
and the target appearanceϕ(X) are updated by linear interpolation:

Γ =
Y

K(ϕ(X),ϕ(X))+λ
, (3)

Γt = (1−β )∗Γt−1+β ∗Γ, (4)

ϕt(X) = (1−β )∗ϕt−1(X)+β ∗ϕ(X), (5)
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wheret is thet-th frame andβ is the learning rate. Actually, this update strategy works well
when there is no occlusion and the object appearance changesslowly.

When the object is occluded, the inappropriate update of object appearance may lead to
model drift . To deal with the problem, we introduce a simple indicator to evaluate whether
the object is occluded and adaptively adjust the learning rate. If the object is occluded, we
reduce the learning rate; if else, keep the learning rate. The indicator is the overlapping rate
To between the estimated object state of multi-scale kernelized correlation tracking filter and
high confident candidate bounding boxes of online detectionfilter. With the overlapping rate
To and the lower overlapping rate boundT , we adjust the learning rateβ as follows:

β =

{

0.1∗βinit, i f To < T

βinit , otherwise
(6)

whereβinit is the initialization value of the learning rateβ andT = 0.05.
The new object state can be found by maximizing the correlation scores,

s = maxF−1{Γ◦K(ϕ(X),ϕ(Z))}, (7)

wheres denotes the maximum value of the confidence map of the search regionz=F−1(Z)
in the spatial domain, andZ is the representation ofz in the Fourier domain.

3.2 Online CUR Filter

There is a common sense that a re-detection module is required for a robust long-term track-
ing algorithm in the case of tracking failure,e.g. out-of-view and long-term occlusion. How-
ever, how to train an effective classifier as a detector is difficult because it strongly depends
on the training samples, especially for the labels of the training sample is hard to guarantee.
One empirical method is to explore the spatial-temporal structure information to verify the
correctness of the training sample. In addition, the time complexity of learning the classifier
and using the classifier for detection with exhaustive search is high. Different from previous
trackers [16, 18, 28], where online classifier needs to be trained, we propose a novel online
CUR filter for detection which can be learnt easily and has very few parameters (i.e. the
sampling numberc) and has sufficient theory guarantee.

CUR matrix approximation is one important low rank matrix approximation technique.
It computes the low rank approximation of an arbitrary data matrix by using the actual rows
and columns of the matrix [29, 32]. It has been a very useful tool for handling large matrices.
Specially, a CUR decomposition algorithm seeks to find a subset of c columns ofA to form
a matrixC ∈ R

m×c, a subset ofr rows to form a matrixR ∈R
r×n, and an intersection matrix

U ∈ R
c×r so that|||A−CUR||ξ is minimized. Currently, randomized algorithms (e.g. CUR)

have been also used in the context domain of theoretical computer science and machine
learning. According to the works [4, 8, 29], much tighter error bounds or much lower time
complexity of the CUR algorithms are studied and guaranteed. In this paper, we propose an
online CUR matrix approximation algorithm to preserve the low rank representation of the
object appearance representation over time. To the best of our knowledge, it is the first work
to propose an online CUR matrix approximation and apply it toobject tracking to handle the
model drift problem.

Before introducing the online CUR filter, we first introduce the following definition
which guarantees the error upper bound of randomized projection R.
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Definition 3.1. [1] ε-isometry: Givenε ∈ (0,1), a mapf : Rp → R
q wherep > q is called

anε-isometry on setX ⊂ R
p if for every pairx, y ∈ X , we have

(1− ε)‖x− y‖2
2 ≤ ‖ f (x)− f (y)‖2

2 ≤ (1+ ε)‖x− y‖2
2. (8)

We consider the case thatf is denoted as a linear mapR ∈ R
q×p. The basic idea is to

construct a random projectionR ∈ R
q×p that is an exact isometry "in expectation"; that is,

for everyx ∈ Rp,
E[‖Rx‖2

2] = ‖x‖2
2. (9)

Based onDefinition 3.1, we just samplec columns of data matrixA with random sampling2

to generate the column matrixC, and then average the column matrixC so as to achieve
the object detection filterDt . To be specific, suppose in thet-th frame we extract the object
template representation matrixOt inside the object bounding box which preserves the spatial
corresponding relation, we vectorize the object appearance representationAt to a vector
at as one column of the data matrixA, i.e. A can be also treated as the historical object
representation matrix. After the column matrixC is randomly generated, we average matrix
C in the column dimension as follows:

dt =
1
c ∑

i=1,...,c

C(:, i). (10)

Then the vectordt is transformed to a bounding box matrixDt spatially corresponding the
object template, which is treated as the CUR filterDt in the current frame. After the rep-
resentationDt is achieved, we compute the similarity degree betweenDt and each possible
alignment in a test image using the convolution theorem. Then it can be treated as an ob-
ject correlation filter. According to Eq. (11), the only parameterc depends on the value of
the target rankk and the error probabilityε. If we setk = 2 andε = 0.2, we can achieve
that c ≈ 20. To preserve the intrinsic structure of data matrixA, the randomized sampling
method utilizes a common uniform sampling method and can be treated as the random pro-
jection matrixR. Theorem 1 gives mathematical analysis and the theory guarantee of error
upper bound for randomized selected column matrixC to approximate the data matrixA.
The main time complexity is the cost of generating a random number sequence, computing
the average values as Eq. (10) and filtering in the test image.

Theorem 1. [4] Given a matrix A ∈ R
m×n of rank ρ , a target rank k(2 ≤ k < ρ), and

0< ε < 1, the algorithm selects

c =
2k
ε
(1+ o(1)) (11)

columns of A to form a matrix C ∈ R
m×c. Then the following inequality holds:

E||A −CC+A||2F ≤ (1+ ε)||A −Ak||
2
F , (12)

where the expectation is taken w.r.t. C and C+ denotes the Moore-Penrose pseudo-inverse
of C, and Ak is the best m× n matrix of rank k constructed via the SVD. Furthermore, the
matrix C can be obtained in time:

O(mk2ε−
r
3 + nk3ε−

2
3 )+TMultiply(mnkε−

2
3 ). (13)

2To keep the results consistent from the benchmark datasets,we initialized the random number generator in
matlab using the code ’stream = RandStream(’mt19937ar’,’Seed’,5489); RandStream.setGlobalStream(stream);’.



ZHU, WANG, WU, LU: COLLABORATIVE CORRELATION TRACKING 7

It should be noted that the detector needs to approximate theobject representation data
matrix A for the whole historical process while multi-scale kernelized correlation tracking
filter pays more attention to the spatial-temporal consistency constraints between the nearest
neighbour frames, i.e. the focuses of attention between a detector and a tracker are different.

3.3 Collaborative Correlation Tracker

With the multi-scale kernelized correlation tracking filter and online CUR filter, we construct
a collaborative correlation tracker as follows.

In our tracking algorithm, the MKC tracker first computes thecorrelation output based
on the previous target state. And the preliminary target state õt (i.e. the object center loca-
tion and the size of the bounding box) can be found by maximizing the correlation score.
Then we detect the top-k confident bounding boxes and post-process these bounding boxes
D̃t = {d̃1, ..., d̃k} with the non-maximal suppression (NMS), which is a very popular post-
processing method for eliminating redundant object detection windows [12]. In this paper,
k = 10. If the overlap rate between the stateõt and one of the detected candidate bound-
ing boxesD̃t is larger thanT , we consider the statẽot as the correct target stateot in the
t-th frame; otherwise, the statẽot may be not correct, and then we take use ofD̃t . To be
specific, for each detection candidate bounding box we use the multi-scale kernelized cor-
relation tracking filter to obtain the maximum correlation score ˜si and the correlation score
of the preliminary target state ˜s1 as all candidate scoress̃= {s̃1, ..., s̃k, s̃k+1}. To preserve
the spatial-temporal consistency structure in consecutive frames, we re-correct all candidate
scores with spatial Gaussian distribution, which is based on the spatial distance between the
candidate bounding box center and the last estimated objectcenter. Then the corresponding
candidate state of the maximum candidate correlation scoreis found as the final object target
stateot . In this paper,T = 0.05.

4 Experiments

We evaluate our collaborative tracker on two public challenging benchmark datasets, CVPR-
2013 Visual Tracker Benchmark [30] and Princeton Tracking Benchmark [27], by following
rigorously their evaluation protocols. There are totally 145 sequences used to evaluate the
proposed approach (i.e, 50 sequences in CVPR2013 Visual Tracker Benchmark and 95 vali-
dated sequences in Princeton Tracking Benchmark). In all the experiments, we use thesame
parameter values for all sequences in two benchmark datasets.

We denote the proposed multi-scale kernelized correlationtracker as MKC and collab-
orative correlation tracker as CCT3. Our approaches are implemented in Matlab. The ex-
periments are performed on an Intel(R) Core(TM) i5-2400 CPUwith 2 core, 3.10 GHz and
20G RAM. In CVPR2013 Visual Tracker Benchmark, our algorithm performs well at 52.0
frames per second (FPS) average in all sequences where KCF is175.9 FPS, DSST is 34.3
FPS, MKC is 67.9 FPS, respectively. Both our baseline MKC tracker and CCT tracker with
online CUR filter are faster than DSST with better performance. Although our tracker is
slower than KCF, our tracker is still real-time and our performance is better than KCF shown
in Fig. 1.

3The source code and experimental results are available at
http://www.nlpr.ia.ac.cn/iva/homepage/jqwang/publications.htm

http://www.nlpr.ia.ac.cn/iva/homepage/jqwang/publications.htm
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Figure 1: Precision and success plots of overall performance comparison for the 50 videos
with 51 target objects in the benchmark [30] (best-viewed in high-resolution). The mean
precision scores for each tracker are reported in the legends. Our methods are shown inred
andgreen. In both cases our approaches (CCT and MKC) perform favorably better than the
state-of-the-art tracking methods.

4.1 Implementation Details

To speed up the detection process, we resize the object to keep the minimum value of width
or height as a small value (e.g., 32). Then we resize the test image with the same scale
ratio of the object. The parameters in our multi-scale kernelized correlation tracking filter
are same as [6, 14]. The CUR filter feature is represented by raw pixel values (from 0 to 1)
subtracting 0.5. The sample number of column matrixC for learning the CUR filter is set
as 20. If the row number of the data matrixA is smaller than 40, we update the CUR filter
incrementally with the learning rate same as [6] because of simplicity.

4.2 CVPR2013 Visual Tracker Benchmark

We evaluate our methods with 33 different state-of-the-arttrackers. The trackers used for
comparison are: VTD [21], TLD [ 18], Struck [11], ASLA [ 17], SCM [38], CSK [15], CN
[7], KCF [14], TPGR [9], DSST [6] and our trackers (MKC and CCT), etc. The overall
performance is shown in Fig.1. The public codes of the comparative trackers are provided
by the authors and the parameters are fine tuning. All algorithms are compared in terms
of the initial positions in the first frame from [30]. Their results are also provided with
the benchmark evaluation [30] except KCF, CN, TGPR4 and DSST. Here, KCF used HOG
feature and the gaussian kernel which achieved the best performance in [14]. CN’s source
code was originated from [7]. It was modified to adopt the raw pixel features as [14] for
handling the grey-scale images.

To evaluate the performance of the proposed method, we follow the metric used in [30],
where distance precision is the relative number of frames inthe sequence where the center
location error of the target and the ground truth is smaller than a certain threshold (e.g.,
20 pixels), and overlap precision is denoted as the percentage of frames where the their

4The results of TGPR came fromhttp://www.dabi.temple.edu/~hbling/code/TGPR.htm.

http://www.dabi.temple.edu/~hbling/code/TGPR.htm
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bounding box overlap exceeds a threshold (e.g., 0.5). Fig. 1 shows precision and success
plots which contains the mean distance and overlap precision over all the 50 sequences.
The trackers in the legend are ranked using the mean precision score in precision plots and
the area under the curve (AUC) in success plots, respectively. Only the top 10 trackers are
displayed for clarity.

As shown in Fig.1, our approach CCT improves the baseline HOG-based KCF tracker
with a significant gain in accuracy. To be specific, our MKC andCCT tracker improves the
overlap success rate of their baseline methods from 51.7% to 57.9%, and from 57.9% to
60.5%. Moreover, our MKC tracker improves the precision rate of the baseline method KCF
from 74.3% to78.3% because of accurate scale estimation, and then CCT boosts the MKC
tracker with a gain of3.0% due to online CUR filter for detection. DSST obtained the top-1
performance in the challenge of VOT2014 [19]. For merging the correlation filter tracker
with kernel representation and online CUR filter for detection, our MKC and CCT tracker
outperform the DSST tracker2% and4.6% in overlap success rate, and4.1% and7.1% in
distance precision (20 pixels), respectively. Overall, our trackers are better than the other
trackers and achieves a significant improvement.

4.3 Princeton Tracking Benchmark

Table 1:Results on the Princeton Tracking Benchmark:successful rates (%) and rankings
(in parentheses) for different categorizations. The best results are inred and the second best
in blue. hu.:human; an.:animal; ri.:rigid; pa.:passive;ac.:active

Algo.
Avg. target type target size movement occlusion motion type

Rank hu. an. ri. large small slow fast yes no pa. ac.

CCT 1 50(1) 51(1) 64(1) 53(1) 57(1) 69(1) 50(1) 44(1) 71(1) 63(1) 53(1)
Struck 2.82 35(2) 47(3) 53(4) 45(2) 44(4) 58(2) 39(2) 30(4) 64(2) 54(4) 41(2)

VTD 3.27 31(5) 49(2) 54(3) 39(4) 46(2) 57(3) 37(3) 28(5) 63(3) 55(3) 38(3)

RGBdet 4.36 27(7) 41(5) 55(2) 32(7) 46(3) 51(5) 36(4) 35(2) 47(6) 56(2) 34(5)

CT 5.36 31(4) 47(4) 37(7) 39(3) 34(7) 49(6) 31(5) 23(8) 54(4) 42(7) 34(4)

TLD 5.64 29(6) 35(7) 44(5) 32(6) 38(5) 52(4) 30(7) 34(3) 39(7) 50(5) 31(7)

MIL 5.82 32(3) 37(6) 38(6) 37(5) 35(6) 46(7) 31(6) 26(6) 49(5) 40(8) 34(6)

SemiB 7.73 22(8) 33(8) 33(8) 24(8) 32(8) 38(8) 24(8) 25(7) 33(8) 42(6) 23(8)

OF 9.00 18(9) 11(9) 23(9) 20(9) 17(9) 18(9) 19(9) 16(9) 22(9) 23(9) 17(9)

Princeton Tracking Benchmark was constructed by Song and Xiao [27], which consists
of 100 videos with both RGB and depth data in high diverse challenging factors, including
object deformation, occlusion, moving camera, and complexenvironments. The dataset is
valuable in evaluating the effectiveness of different tracking algorithms, even if only use the
RGB data.

Meanwhile, the authors also provide an online evaluation website and reserve the ground
truth of 95 out of the 100 sequences for the fair comparison. Until now, there are eight state-
of-the-art trackers only using RGB data and nineteen publicRGBD trackers. Because we
only use the RGB data, the paper compare the proposed CCT tracker with the other eight
RGB trackers, including Struck [11], VTD [ 21], CT [34], TLD [ 18], MIL [ 2], SemiB [10],
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OF [27]. Table1 shows our results generated by the website automatically after we submitted
our tracking results online. The results show that the proposed CCT tracker again achieves
the state-of-the-art performance over other trackers.

5 Conclusion

In this paper, we propose a collaborative correlation tracker to handle the scale variation and
the model drift problem in online tracking. To be specific, multi-scale kernelized tracking
filter not only better represent the object with kernel feature space, but also accurately esti-
mate the object scale. Moreover, we develop a robust and fastCUR filter for detection which
alleviates the model drift problem caused by long-term occlusion or out-of-views. Finally,
extensive experiments show that our tracker outperforms the state-of-the-art methods on two
tracking benchmark data sets including 145 challenging sequences.
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