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Abstract

Correlation filter based tracking has attracted many rebess’ attention in recent
years for high efficiency and robustness. Most existing wddcus on exploiting dif-
ferent characteristics with correlation filters for visti@cking, e.g. circulant structure,
kernel trick, effective feature representation and canitghlormation. However, how to
handle the scale variation and the model drift is still anropeblem. In this paper, we
propose a collaborative correlation tracker to deal withdbove problems. Firstly, we
extend the correlation tracking filter by embedding thees¢attor into the kernelized
matrix to handle the scale variation. Then a novel long-t€R filter for detection
is learnt efficiently with random sampling to alleviate mbdéft by detecting effec-
tive object candidates in the collaborative tracker. Iis thiay, the proposed approach
could estimate the object state accurately and handle tidelddft problem effectively.
Extensive experiments show the superiority of the proposethod.

1 Introduction

Visual tracking is a fundamental problem in computer visilbmefers to the task of generat-
ing the trajectories of the moving objects and has many egipdins including surveillance,
autonomous driving and image guided surgery. Numerousadsthave been dedicated
to generating an object trajectory by computing the trdimsieof the object in consecutive
frames, among which the correlation filter method is one efrtftost common methods re-
cently [3, 6, 11, 14, 18, 38]. The popularity of the correlation filter method is due t® it
simplicity, high efficiency and robustness.

Correlation filter is to evaluate the similarity degree bynputing the dot product for
each possible alignment of one learned template (or filda)ive to a test image. After its
first introduction (i.e. Person’s Correlation) by Galtonli@88 [], it has been adopted to
solve various computer vision problems, such as objectteteand recognition12, 20],
pose detectionl[3], and object trackingd]. The computation of correlation filters can be
speeded up by using the convolution theorem, which staststtb convolution of two func-
tions in the spatial domain can be computed in the Fourieradoras the element-wise
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multiplication of the Fourier Transform of those two furmts. Due to its computation-
al efficiency, correlation filters have attracted much aitenrecently for visual tracking
[3, 6, 7, 14, 15, 35]. Despite its good performance, most of these correlatiethods have
two main limitations, the first is how to adjust the objectlecefficiently. In order to con-
sistently track the object, Danelljabal. [6] proposed a separate 1-dimensional correlation
filter to estimate the target scale, but they only use theraldeature space as the object
representation. In this paper, we propose a multi-scaleekieed correlation filter as our
tracking filter by embedding the scale variation into thenledized correlation filter while
forming a separate pyramid of object representation. Iritiaaigl the use of adaptive learn-
ing rate based on failure detection is helpful for onlinehéag a robust tracking filter.

The second limitation is how to handle the model drift probleaused by the long-term
occlusion or out-of-view, which is a very important probléon online tracking £3]. One
common mechanismis to introduce a detection module whictsebect some effective can-
didates to rectify the base correlation tracker. In thisgsawe design a novel online CUR
filter for detection. CUR matrix approximation computes ke rank approximation of a
given matrix by using the actual rows and columns of the matnid have been studied in
the area of theoretical computer science for large matgx@pmation B]. In the long-term
tracking process, all of the historical object represéonatcan form a large data matrix for
the current frame which fits for the CUR theory. The large diarix can be fast approxi-
mated by online CUR for representing the intrinsic objecicure. In this work we develop
an online CUR for learning an online detection filter by ramdgampling. The online CUR
filter can not only exploit the low rank property of object repentation37] in the spatial-
temporal domain of tracking, but also project the represt@r matrix of historical objects
into a subspace with error upper bound so as to achieve atrobjest representation. The
low rank property of object representation is prevalenoimg-term tracking and could be
used to alleviate the model drift.

The main contributions of this work are summarized as fofiow

o An efficient online CUR filter for detection is first proposegdgreserving the low rank
counterparts of long-term object representation, whichdraerror upper bound and
can be computed efficiently.

e A novel collaborative correlation tracker is proposed tiofly capture the target ap-
pearance by multi-scale kernelized correlation filter axplat the long-term object
representation by the learned CUR filter.

2 Related Work

Visual tracking has been studied extensively by many rekeas over the years due to its
importance. While a comprehensive review of the trackinghogs is beyond the scope
of the paper, please refer ta4, 33] for a survey, and also talp, 24, 26, 27, 31] for some
empirical comparisons. In this section, we introduce sormkkg/closely related to this work:
correlation filter based tracking and tracking-by-detattpproaches.

Correlation filters have been widely studied in the field afudl tracking. Bolmet al.
[3] modeled the target appearance by an adaptive correlalienvihich was optimized by

1CUR approximation of a matrix A consists of three matricesCand R, where C is made from columns of
A, R is made from rows of A, and that the product CUR closelyrapimates A.
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minimizing the output sum of squared error (MOSSE). The otution theorem can be used
with correlation filters to accelerate tracking. Circulatrticture with kernels tracker (CSK),
proposed by Henriques al. [15], exploited the circular structure of adjacent subwindows
in an image for quickly learning a kernelized regularizeastesquares classifier of the target
appearance with dense sampling. Kernelized correlatimndi(KCF) [L4] was an extended
version of CSK by re-interpreting correlation trackingngsthe kernelized Ridge regression
with multi-channel features. Danellj&hal. [7] introduced color attributes to improve track-
ing performance in colorful sequences and then proposdd3i& tracker§] with accurate
scale estimation by one separate filter. Zhetray. [35] utilized the spatial-temporal context
in the Bayesian framework to interpret correlation tragkiin a word, all of them attempt
to exploit different characteristics with correlationdils for trackinge.g. circular structure
[15], kernel trick [L4], color attributesT], effective feature representaticad. HOG) [6, 14],
the consistency of object representation in scale sg@jcarid context information3s).

To leverage the stability and plasticity residing onlinelae in visual tracking, Kalat
al. [18] proposed a unified tracking-learning-detection (TLD)fi@work where short-term
tracker and long-term online detector help each other bioexyy the structure of unlabeled
data, i.e. the short-term tracker provides high confidemides to train and update the de-
tector, and the detector re-initializes the short-terraktea when it fails. Hareet al. [11]
proposed structure SVM by exploring the spatial label dtigtion of the training samples as
the intrinsic relative structure, which alleviated the lgeom of label prediction about noise
samples (i.e. label ambiguity). Zhang and van der Ma&téjdroposed a structure preserv-
ing model with graphical structure in the tracking-by-adxien framework which handled the
model drift problem in some extent. Danelljainal. [6] proposed a separate 1-dimensional
correlation filter to estimate the target scale in an imafieiefitly. Henriquet al. [14] pro-
posed a circular structure correlation filter tracker wighriel and interpreted the correlation
tracking as a ridge regression problem which can exploreplagial label distribution with
dense samples. Inspired by the above trackers, in this werkmbed the scale estimation
[6] into kernelized correlation filter tracket{]] as our multi-scale kernelized correlation fil-
ter tracker and propose a novel online CUR filter for detectibue to the computational
efficiency of correlation filter, the spatial label distritmn by circular structure, accurate
multi-scale object representations with scale estimatéon an online detection filter, the
proposed tracker effectively handles the problems of lab@biguity, scale variation, and
model drift existing in online tracking.

3 Collaborative Correlation Tracking

3.1 Multi-scale Kernelized Correlation Tracking (MKC)

The common idea of the correlation filter-based track8r$] 7, 14, 15, 35 is to train a
discriminative correlation filter on a set of observed sapatches. The discriminative cor-
relation filter is trained with a training sample patghin the Fourier domain in the first
frame. Then it is applied to estimate the target state in dypential frames. After the
target state is predicted, the discriminative correlafitber will be updated in each frame.
Each training sampl¥ in conjunction with a desired correlation output or proliabiabel
distributionY in the Fourier domain is used for learning or updating theffiltThe opti-
mal kernelized correlation filtad in the Fourier domain with a fixed initialized sizgj: is
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obtained by minimizing the following cost function,
€= F Y (Ho ¢ (X;snit, Seur) —Y) |2+ A FHH)|PZ, (1)

whereo is Hadamard product operat@, is the size of the training sample in the curren-
t frame. ¢ (X;sinit,Seur) IS @ mapping function for transforming the feature représtem

X with sizesy,r into another feature representation with sszg by preserving the consis-
tency of multi-scale object representations in scale spacis a regularization parameter
that controls overfitting | - || is Frobenius normF(-) and F~1(-) are the discrete Fourier
transform and the inverse discrete Fourier transform fanctespectively. For simplicity,
we denotep (X; sinit, Seur) @S @ (X). To estimate the object scale, multi-scale object repre-
sentation similar to€] is built independently while the predicted scale factoeisbedded

in Kernelized correlation filter. Therefore, the integthteacker is denoted as multi-scale
Kernelized correlation tracking.

Similar to [6], we decompose multi-scale kernelized correlation tragknto two sep-
arate filters for translation and scale estimation. Diffiérieom [6], which only used the
original feature space as the object representation, wesept the object with kernel fea-
ture space and extend kernelized correlation filter withadestactor. Based on kernel trick
[29 and circular structurels], Henriqueset al. [14] proposed kernelized correlation filters
for visual tracking which allowed more flexible, non-lineagression functions integrating
with multi-channel features. Due to the characteristihefkernel trick, the model optimiza-
tion is still linear in the dual space even if with a differeset of variables. Danelljaet al.

[6] proposed a separate 1-dimensional correlation filter timese the target scale. Inspired
by [14] and [6], we propose a multi-scale kernelized correlation filteickhembeds the s-

cale variation into the kernelized correlation filter. Theltiascale kernelized correlation
tracking filterH can be represented as:

YO(¢(X))
K(@(X),0(X))+A"

where®(-) is a feature mapping function to compute the kernel marix -) in Fourier
space anK is the feature representation of the training sample in theiEr domain.

With the guarantee of the consistency of object representat scale space, we can
scale the object representation without large loss of thisic object structure. Therefore,
to reduce the computational complexity and preserve theresite of object representation
in different scales, we resize the current training sampkeales., to the initial scalespjt
so that the feature dimension of the object filtkeis consistent in the whole tracking process.
The current scaley, is achieved independently by a feature pyramid convoluticensepa-
rate scale estimate filter similar t6][ Therefore, our multi-scale kernelized correlation filte
tracker has the characteristics of scale estimation antekéick, where the optimal scale
Seur €an be achieved by scale estimation and multiple channeiresacan be embedded by
kernel trick naturally.

During the tracking process, the coefficiehtsf kernelized regularized Ridge regression
and the target appearangéX) are updated by linear interpolation:

H=—

)

Y
r = K(@(X),0(X))+A’ (3)
M = (1-B)«r- l+B* 4)

¢'(X) (1=B)*¢" 1(X)+B*d(X), (5)
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wheret is thet-th frame and3 is the learning rate. Actually, this update strategy workd w
when there is no occlusion and the object appearance chaluyég.

When the object is occluded, the inappropriate update aalappearance may lead to
model drift . To deal with the problem, we introduce a simpidicator to evaluate whether
the object is occluded and adaptively adjust the learnitey & the object is occluded, we
reduce the learning rate; if else, keep the learning rate.ifticator is the overlapping rate
T, between the estimated object state of multi-scale kemettinrrelation tracking filter and
high confident candidate bounding boxes of online detediit@n With the overlapping rate
T, and the lower overlapping rate boufid we adjust the learning rafe as follows:

B OTJT*Binit, if T0.<T (6)
Binit s otherwise
wherefiit is the initialization value of the learning rgfeand7 = 0.05.
The new object state can be found by maximizing the corwiatcores,
s=maxF I oK(¢(X),9(2))}, (7)

wheres denotes the maximum value of the confidence map of the seegdinz = F~1(2)
in the spatial domain, andis the representation afin the Fourier domain.

3.2 Online CUR Filter

There is a common sense that a re-detection module is relfoira robust long-term track-
ing algorithm in the case of tracking failureg. out-of-view and long-term occlusion. How-
ever, how to train an effective classifier as a detector f&cdif because it strongly depends
on the training samples, especially for the labels of thiaitng sample is hard to guarantee.
One empirical method is to explore the spatial-temporalcstire information to verify the
correctness of the training sample. In addition, the tinraglexity of learning the classifier
and using the classifier for detection with exhaustive $e@rbigh. Different from previous
trackers L6, 18, 28], where online classifier needs to be trained, we proposevel ooline
CUR filter for detection which can be learnt easily and hay yew parameters (i.e. the
sampling numbec) and has sufficient theory guarantee.

CUR matrix approximation is one important low rank matripegximation technique.
It computes the low rank approximation of an arbitrary datdrir by using the actual rows
and columns of the matrixp, 32]. It has been a very useful tool for handling large matrices
Specially, a CUR decomposition algorithm seeks to find aeiudic columns ofA to form
a matrixC € R™€, a subset of rows to form a matriXR € R"*", and an intersection matrix
U € R™" so that|||A—CUR]|¢ is minimized. Currently, randomized algorithnesyt CUR)
have been also used in the context domain of theoretical samgcience and machine
learning. According to the worksgl] 8, 29|, much tighter error bounds or much lower time
complexity of the CUR algorithms are studied and guaranteethis paper, we propose an
online CUR matrix approximation algorithm to preserve the rank representation of the
object appearance representation over time. To the bestrédhowledge, it is the first work
to propose an online CUR matrix approximation and apply d@ldfect tracking to handle the
model drift problem.

Before introducing the online CUR filter, we first introdudestfollowing definition
which guarantees the error upper bound of randomized pirojeR.
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Definition 3.1. [1] e-isometry: Givere € (0,1), a mapf : RP — R% wherep > qis called
ane-isometry on seft’ C RP if for every pairx, y € X, we have

L-e)lx=ylIZ< ()~ fW)E < (L+e)lx—y]3 (@)

We consider the case thétis denoted as a linear m&pe R9P. The basic idea is to
construct a random projectidd € R9*P that is an exact isometry "in expectation”; that is,
for everyx € RP,

2 2
E[|[Rx[2] = [Ix[[2- )

Based orDefinition 3.1, we just sample columns of data matriA with random sampling

to generate the column matr®, and then average the column mat@ixso as to achieve
the object detection filtelD; . To be specific, suppose in theh frame we extract the object
template representation matfx inside the object bounding box which preserves the spatial
corresponding relation, we vectorize the object appearaepresentatiod; to a vector

a as one column of the data mati i.e. A can be also treated as the historical object
representation matrix. After the column mat@xs randomly generated, we average matrix
C in the column dimension as follows:

:Z C(Li). (10)

Then the vectod; is transformed to a bounding box matiix spatially corresponding the
object template, which is treated as the CUR filigrin the current frame. After the rep-
resentatiorD; is achieved, we compute the similarity degree betwieeand each possible
alignment in a test image using the convolution theorem.nTihean be treated as an ob-
ject correlation filter. According to Eq.1(), the only parameter depends on the value of
the target rankk and the error probabilitg. If we setk =2 ande = 0.2, we can achieve
thatc =~ 20. To preserve the intrinsic structure of data ma#&ixhe randomized sampling
method utilizes a common uniform sampling method and candaged as the random pro-
jection matrixR. Theorem 1 gives mathematical analysis and the theory guaranteeaf err
upper bound for randomized selected column mafrito approximate the data matrix.
The main time complexity is the cost of generating a randomlmer sequence, computing
the average values as EG0f and filtering in the test image.

Theorem 1. [4] Given a matrix A € R™" of rank p, a target rank k(2 < k < p), and

0 < € < 1, the algorithm selects
2k
c= ?(1+ o(1)) (11)

columns of A to forma matrix C € R™<¢, Then the following inequality holds:
E[|A—CC*A|IE < (1+¢)||A—AllE, (12)

where the expectation is taken w.r.t. C and C* denotes the Moore-Penrose pseudo-inverse
of C, and A is the best m x n matrix of rank k constructed via the SVD. Furthermore, the
matrix C can be obtained in time:

O(mk2e 5 + k&~ 3) + Ty py (MNke ™ 3). (13)

2To keep the results consistent from the benchmark datasetinitialized the random number generator in
matlab using the code 'stream = RandStream('mt19937ae@d35489); RandStream.setGlobalStream(stream);’.
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It should be noted that the detector needs to approximateljeet representation data
matrix A for the whole historical process while multi-scale kerneti correlation tracking
filter pays more attention to the spatial-temporal consisteonstraints between the nearest
neighbour frames, i.e. the focuses of attention betweeneztte and a tracker are different.

3.3 Collaborative Correlation Tracker

With the multi-scale kernelized correlation tracking filead online CUR filter, we construct
a collaborative correlation tracker as follows.

In our tracking algorithm, the MKC tracker first computes tmgrelation output based
on the previous target state. And the preliminary targee$ta(i.e. the object center loca-
tion and the size of the bounding box) can be found by maximithe correlation score.
Then we detect the top-k confident bounding boxes and poseps these bounding boxes
D = {ch, ...,Jk} with the non-maximal suppression (NMS), which is a very gappost-
processing method for eliminating redundant object deteatindows [L2]. In this paper,

k = 10. If the overlap rate between the stateand one of the detected candidate bound
ing boxesD; is larger than7, we consider the stat® as the correct target stabte in the
t-th frame; otherwise, the stafig may be not correct, and then we take usdgf To be
specific, for each detection candidate bounding box we usenthiti-scale kernelized cor-
relation tracking filter to obtain the maximum correlati@mores” and the correlation score
of the preliminary target statg as all candidate scor&s= {$,...,%,5%.1}. To preserve
the spatial-temporal consistency structure in conseefitames, we re-correct all candidate
scores with spatial Gaussian distribution, which is bagethe spatial distance between the
candidate bounding box center and the last estimated atgater. Then the corresponding
candidate state of the maximum candidate correlation ssdoend as the final object target
stateo. In this papery = 0.05.

4 Experiments

We evaluate our collaborative tracker on two public challeg benchmark datasets, CVPR-
2013 Visual Tracker Benchmark({] and Princeton Tracking Benchmark{], by following
rigorously their evaluation protocols. There are totalyp sequences used to evaluate the
proposed approach (i.e, 50 sequences in CVPR2013 Visuekdr8enchmark and 95 vali-
dated sequences in Princeton Tracking Benchmark). Inekxiperiments, we use teame
parameter values for all sequences in two benchmark dataset

We denote the proposed multi-scale kernelized correldtamker as MKC and collab-
orative correlation tracker as CETOur approaches are implemented in Matlab. The ex
periments are performed on an Intel(R) Core(TM) i5-2400 G#th 2 core, 310 GHz and
20G RAM. In CVPR2013 Visual Tracker Benchmark, our algorithmfpems well at 520
frames per second (FPS) average in all sequences where KGB.&FPS, DSST is 33
FPS, MKC is 679 FPS, respectively. Both our baseline MKC tracker and C@dker with
online CUR filter are faster than DSST with better perfornegnalthough our tracker is
slower than KCF, our tracker is still real-time and our perfance is better than KCF shown
in Fig. 1.

3The source code and experimental results are available at
http://ww. nl pr.ia.ac.cn/ival honepage/ j qwang/ publ i cati ons. ht m
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Figure 1: Precision and success plots of overall performaonmparison for the 50 videos
with 51 target objects in the benchmaf(] (best-viewed in high-resolution). The mean
precision scores for each tracker are reported in the legeddr methods are showniiad
andgreen. In both cases our approaches (CCT and MKC) perform favptadtter than the
state-of-the-art tracking methods.

4.1 Implementation Details

To speed up the detection process, we resize the object pattkkee@ninimum value of width
or height as a small value (e.g., 32). Then we resize the riemgjieé with the same scale
ratio of the object. The parameters in our multi-scale kiezed correlation tracking filter
are same a%[ 14]. The CUR filter feature is represented by raw pixel valuesnifO to 1)
subtracting . The sample number of column mat@xfor learning the CUR filter is set
as 20. If the row number of the data matAxis smaller than 40, we update the CUR filter
incrementally with the learning rate same ékldecause of simplicity.

4.2 CVPR2013 Visual Tracker Benchmark

We evaluate our methods with 33 different state-of-tharadkers. The trackers used for
comparison are: VTDZ1], TLD [18], Struck [L1], ASLA [17], SCM [38], CSK [15], CN

[7], KCF [14], TPGR P], DSST [6] and our trackers (MKC and CCT), etc. The overall
performance is shown in Fid.. The public codes of the comparative trackers are provided
by the authors and the parameters are fine tuning. All alyostare compared in terms
of the initial positions in the first frame fronB{]. Their results are also provided with
the benchmark evaluatioB(] except KCF, CN, TGPRand DSST. Here, KCF used HOG
feature and the gaussian kernel which achieved the begrpeahce in 14]. CN'’s source
code was originated fronv]. It was modified to adopt the raw pixel features ag][for
handling the grey-scale images.

To evaluate the performance of the proposed method, wenfdlie metric used indQ],
where distance precision is the relative number of framékeérsequence where the center
location error of the target and the ground truth is smal@nta certain threshola.g.,

20 pixels), and overlap precision is denoted as the pergenté frames where the their

4The results of TGPR came froht t p: / / www. dabi . t enpl e. edu/ ~hbl i ng/ code/ TGPR ht m
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bounding box overlap exceeds a thresh@d.( 0.5). Fig. 1 shows precision and success
plots which contains the mean distance and overlap precier all the 50 sequences.
The trackers in the legend are ranked using the mean predsie in precision plots and

the area under the curve (AUC) in success plots, respecti@ily the top 10 trackers are

displayed for clarity.

As shown in Fig.1, our approach CCT improves the baseline HOG-based KCFdrack
with a significant gain in accuracy. To be specific, our MKC &@T tracker improves the
overlap success rate of their baseline methods from%1o 57.9%, and from 50% to
60.5%. Moreover, our MKC tracker improves the precision ratehefthaseline method KCF
from 74.3% to 78.3% because of accurate scale estimation, and then CCT bbedst$C
tracker with a gain 08.0% due to online CUR filter for detection. DSST obtained the op
performance in the challenge of VOT201¥9[. For merging the correlation filter tracker
with kernel representation and online CUR filter for detattiour MKC and CCT tracker
outperform the DSST track@ and4.6% in overlap success rate, add% and7.1% in
distance precision (20 pixels), respectively. Overall, wackers are better than the other
trackers and achieves a significant improvement.

4.3 Princeton Tracking Benchmark

Table 1:Results on the Princeton Tracking Benchmark:successful rates (%) and rankings
(in parentheses) for different categorizations. The besilts are ined and the second best
in blue hu.:human; an.:animal; ri.:rigid; pa.:passive;acivact

Avg. target type target size| movement| occlusion |motion type
Rank| hu. | an. | ri. |largelsmalll slow| fast| yes| no | pa. | ac.
CCT 1 |50(1)/51(1)64(1)|53(1)|57(1)|69(1)|50(1)]44(1) 71(1)[63(1){53(1)
Struck | 2.82135(2)|47(3)|53(4)] 45(2) 44(4)]58(2)|39(2)[ 30(4)|64(2)|54(4)|41(2)
VTD | 3.27[31(5)49(2),54(3) 39(4)|46(2)|57(3)|37(3)| 28(5),63(3)] 55(3)| 38(3)
RGBdef 4.36 |27(7)|41(5)|55(2)| 32(7)|46(3)|51(5)|36(4)| 35(2)|47(6)| 56(2) 34(5)
CT | 5.36|31(4)47(4) 37(7)|39(3)|34(7)|49(6)31(5)| 23(8)|54(4)[ 42(7)| 34(4)
TLD | 5.64129(6)35(7)|44(5)32(6),38(5)]52(4)|30(7)| 34(3)[39(7)[50(5)| 31(7)
MIL | 5.82|32(3)37(6) 38(6)37(5)[35(6)]46(7)31(6)| 26(6)|49(5)] 40(8)| 34(6)
SemiB| 7.73|22(8)33(8),33(8)]24(8)32(8)| 38(8)| 24(8)| 25(7)| 33(8)| 42(6), 23(8)
OF | 9.00]18(9)/11(9)23(9)[20(9)|17(9)118(9)19(9)|16(9),22(9)[23(9)[17(9)

Algo.

Princeton Tracking Benchmark was constructed by Song aad [i7], which consists
of 100 videos with both RGB and depth data in high diverselehging factors, including
object deformation, occlusion, moving camera, and comefesronments. The dataset is
valuable in evaluating the effectiveness of differentliag algorithms, even if only use the
RGB data.

Meanwhile, the authors also provide an online evaluatiolsite and reserve the ground
truth of 95 out of the 100 sequences for the fair comparisantil bow, there are eight state-
of-the-art trackers only using RGB data and nineteen pu®GBD trackers. Because we
only use the RGB data, the paper compare the proposed CQetraith the other eight
RGB trackers, including StrucK.l], VTD [21], CT [34], TLD [18], MIL [ 2], SemiB [10],
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OF [27]. Tablel shows our results generated by the website automaticédiy\aé submitted
our tracking results online. The results show that the pseddCCT tracker again achieves
the state-of-the-art performance over other trackers.

5 Conclusion

In this paper, we propose a collaborative correlation eatik handle the scale variation and
the model drift problem in online tracking. To be specific,Itinsicale kernelized tracking
filter not only better represent the object with kernel featspace, but also accurately esti-
mate the object scale. Moreover, we develop a robust an@aRtfilter for detection which
alleviates the model drift problem caused by long-termwsioin or out-of-views. Finally,
extensive experiments show that our tracker outperformstte-of-the-art methods on two
tracking benchmark data sets including 145 challengingeeces.
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