Fast Action Retrieval from Videos via Feature Disaggregation

Jie Qin'
ginjiebuaa@gmail.com

Li Liu?
li2.liu@northumbria.ac.uk
Mengyang Yu?
m.y.yu@ieee.org
Yunhong Wang'
yhwang@buaa.edu.cn
Ling Shao?
ling.shao@ieee.org

' Beijing Key Laboratory of Digital Media,
School of Computer Science and Engineering,
Beihang University, China

2 Computer Vision and Atrtificial Intelligence Group,
Department of Computer Science and Digital Technologies,
Northumbria University, UK

High-Dimensional Feature X

Cluster 1 x(1)

/,rn(xmﬁ

1

M-Bit Binary Code

Figure 1: The overall framework of the proposed Disaggregation Hashing.

Motivation. Learning based hashing methods have been actively studied
recently. A majority of the approaches [2, 3, 4, 5] have been specifi-
cally developed for image retrieval. However, due to the extra temporal
information, videos are usually represented by much higher dimensional
features compared with images, causing high computational complexity
for conventional hashing schemes. Learning hash functions can become
quite time-consuming and even intractable when dealing with very high-
dimensional video data. Besides, a lot of hashing methods are based on
linear projections (e.g., random projection [4]). In terms of mapping the
data from the very high-dimensional space to a reduced one, the memory
requirements for storing the projection matrix and performing the map-
ping operation impose heavy burdens.

Contributions. A novel hashing scheme, namely Disaggregation Hash-
ing (DH), is proposed for high-dimensional video data. Our main idea is
to disaggregate the original high-dimensional features into several groups
of low-dimensional ones, based on which independent hash functions are
learned. Figure 1 shows the overall framework of our method.

Given a set of data points x, our goal is to find a binary embed-
ding function H(x) = {—1,+1}™, where M is the length of the code.
Disaggregation Hashing learns different hash functions on different sub-
spaces obtained by feature disaggregation. Hence, each bit of the entire
code is learned independently, which enhances the scalability on high-
dimensional video data and allows fast parallel computation as well. Fur-
thermore, the proposed method only needs to store a D-dimensional pro-
jection vector and computing binary codes is of O(D) complexity.

In terms of feature disaggregation or clustering, we show that by in-
corporating a special structure constraint into the projection matrix W of
PCA, W can be regarded as the cluster indicator and the solution to fea-
ture clustering is identical to the one to PCA. Moreover, as mentioned in
[1], k-means clustering has a similar formulation with PCA if we treat W
as the cluster indicator. Therefore, feature clustering can be effectively
addressed using k-means clustering along the feature dimensions.

After feature disaggregation, the original feature space RP is split
into M subspaces R% , where m = 1,...,M, and Z%:I d,, = D. The over-
all hash function H(x) consists of M independent functions h(" (x(™)),
where x(") corresponds to the data points from subspace R%. Each Rm)
maps x(") into one binary code ¢!") € {—1,41} and the final code is a
concatenation of M-bit codes (c<l>7 M >). Specifically, we define the
above independent hash function as:

R (xM) = sgn(wimx (™) 4 pim)y (1)

where ‘sgn()’ returns ‘+1” if the argument is positive and ‘-1 otherwise,
and wi™) € R4 is the projection vector. We aim at learning similarity-

(b) ©

Figure 2: Comparison with state-of-the-art methods in terms of mean Av-
erage Precision on (a) Hollywood2, (b) HMDBS51 and (c) UCF101.

(b)
Figure 3: Comparison with state-of-the-art methods in terms of precision-
recall curves @80 bits on (a) Hollywood?2, (b) HMDBS51 and (c) UCF101.

preserving codes that hold the minimal average Hamming distance be-

(m)

tween similar data points. Let ¢, ’ denote one bit code for a data point

Xp, i.e., cg,m> = pm) (X§,M>), the objective function is defined as:

min)_ \|c§,m)c¢<]m> —Lpgl?
P

2

where [,,; = +1 if x,, and x; are similar points, and —1 otherwise. We
find the solution to Eq. (2) by addressing a greedy optimization problem
and obtain the approximate optimal parameters in Eq. (1).

Results. The experiments are performed for action retrieval on three re-
alistic action datasets, i.e., Hollywood2, HMDBS51 and UCF101, and fol-
low the protocols widely used in [2, 3]. We compare our method with five
state-of-the-art hashing algorithms. As shown in Figure 2 and 3, our hash-
ing scheme consistently outperforms other methods on different datasets
in terms of mean Average Precision and precision-recall curves. Table 1
illustrates the training and coding time of different methods on UCF101.
Thanks to feature disaggregation, our method requires much lower time
for learning hash functions than most of other methods and computing
binary codes for test data points is also very fast.

[1] C. Ding and X. He. K-means clustering via principal component
analysis. In Proc. ICML, 2004.

[2] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean ap-
proach to learning binary codes. In Proc. CVPR, 2011.

[3] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon.
hashing. In Proc. CVPR, 2012.

[4] P.Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proc. STOC, 1998.

[5] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc.
NIPS, 2009.

Spherical

Bi] Runtime (ms) of Training (Coding) \

| LSH | SpH | AGH | ITQ | SpheH | DH |
16 | (87.0) | 4451.8(119.4) | 819.0(44.9)] 5570.0(82.0) | 4774.7(245.0) | 1703.5(2.8)
32 | (103.9)] 4061.8213.7) | 843.9(43.1)] 6093.3(114.6)| 6756.2(2443) | 1538.72.7)
48 | (130.6)| 4513.7(4202) | 913.3(47.0)| 6948.6(140.2)| 7809.5(296.7) | 1820.2(2.3)
64 | (154.3)] 4774.9(600.0) | 857.7(45.3)| 7936.2(159.6)| 10139.0316.9) 2125.3(1.8)
80 | (167.9)] 5202.6(875.4) | 886.4(46.6)| 7960.9(190.6)| 13720.2(339.9)| 2467.7(1.7)

Table 1: Comparison of averaged runtime using different bits on UCF101.

