
NAGEL, MENSINK, SNOEK: EVENT FISHER VECTORS 1

Event Fisher Vectors: Robust Encoding
Visual Diversity of Visual Streams

Markus Nagel1

mail@markusnagel.com

Thomas Mensink1

thomas.mensink@uva.nl

Cees G.M. Snoek1,2

cgmsnoek@uva.nl

1 Intelligent Systems Lab Amsterdam
University of Amsterdam

2 Qualcom Research Netherlands
Amsterdam

Abstract

In this paper we focus on event recognition in visual image streams. More specifi-
cally, we aim to construct a compact representation which encodes the diversity of the
visual stream from just a few observations. For this purpose, we introduce the Event
Fisher Vector, a Fisher Kernel based representation to describe a collection of images
or the sequential frames of a video. We explore different generative models beyond
the Gaussian mixture model as underlying probability distribution. First, the Student’s-t
mixture model which captures the heavy tails of the small sample size of a collection
of images. Second, Hidden Markov Models to explicitly capture the temporal ordering
of the observations in a stream. For all our models we derive analytical approximations
of the Fisher information matrix, which significantly improves recognition performance.
We extensively evaluate the properties of our proposed method on three recent datasets
for event recognition in photo collections and web videos, leading to an efficient compact
image representation which achieves state-of-the-art performance on all these datasets.

1 Introduction
The goal of this paper is to design an effective representation for event recognition in visual
streams, such as photo collections [2, 7] and video clips [9, 19]. This is challenging, since
a compact (vectorial) representation is preferred for efficient recognition, while this repre-
sentation should still capture the visual semantics and temporal diversity of the stream from
only a few samples.

We are inspired by the success of Fisher Vectors [24] for the encoding of images [24, 25]
and videos [21, 27]. In the Fisher Vector, local patches from a single image or trajectories
from a video are encoded using the Fisher Kernel [8] with a Gaussian mixture model (GMM)
as underlying generative probability function. A stream of visual imagery, however, behaves
significantly different than local patches or trajectories. Most notably, streams may consist
of just tens to hundreds of images, while dense sampling methods for patches and trajectories
extract 10K-100K local observations per image or video. Moreover, in contrast to low-level
local descriptors, e.g. SIFT [14] or MBH [27], an image in a stream can be described by
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Figure 1: Event Fisher
Vector pipeline for a
collection of images or
video-stream. We ex-
plore four generative
models as underlying
probabilistic distribu-
tion of the stream.

more discriminative features, e.g. based on pre-trained DeepNets [10, 30]. Finally, the tem-
poral structure of an image collection might be less well defined than the explicit sequential
ordering of frames of a video.

Our main contribution is a Fisher Kernel encoding for a visual stream, either videos or
collections of still images. Our encoding extracts a single representation per collection, is
independent of the number of images in the stream, and is agnostic to the underlying input
features. This is advantageous, since it allows efficient learning of event classifiers, and
leveraging of discriminative DeepNet features [10, 30]. We coin our encoding the Event
Fisher Vector, and illustrate its pipeline in Figure 1.

As our second contribution, we propose alternatives beyond the GMM as the underly-
ing distribution of a visual stream: i) We replace the GMM by a Student’s-t mixture model
(StMM), which is more robust for our small sample size. ii) We explicitly encode the se-
quential ordering of a stream using Hidden Markov Models, with both the GMM and the
StMM as the emission probability function. As a third contribution, we derive analytical
approximations of the Fisher information matrix for all of these models.

The remainder of this paper is organised as follows. We first summarise related work
on event recognition in image and video streams in Section 2. We present our Event Fisher
Vector and the proposed generative models in Section 3. We evaluate extensively the proper-
ties the Event Fisher Vector and its generative models on three challenging event recognition
datasets in Section 4 and demonstrate a new state-of-the-art in all cases.

2 Related Work

In this section we discuss some of the most relevant work on representing photo collections,
event recognition in videos, and the Fisher Vector representation.

Image Collections Recognition of events in streams of images is commonly achieved by a
representation consisting of simple averaging of images features [7] or similarly by a major-
ity vote of single image classification scores [16]. We deem it unlikely that a simple average
can capture the variability of the visual semantics of an image stream. A notable exception
is the Stopwatch Hidden Markov Model approach by Bossard et al. [2], proposed in con-
junction with the challenging Personal Event Collection (PEC) benchmark. They propose a
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discriminative hidden Markov model, that models the transitions between states as a func-
tion of the time gap between consecutive images in a collection of personal photos. This
allows to model the sequential nature of the image stream, an advantageous property which
we adopt in our representation as well. However, their final model requires evaluation of sev-
eral per image features and computing HMM potentials per event and per collection, which
is computationally and memory inefficient. Our proposed method extracts a single vectorial
representation per collection, allowing efficient event recognition. For fair comparison, we
evaluate our method also on the PEC collection, with the author provided features.

Video Event Recognition Similarly to encoding collections of images, also videos have
predominantly been encoded as the mean visual feature of the sampled frames [13, 15].
Alternatively, using a Fisher Vector over several low-level video descriptors, such as SIFT,
STIP and HOG, has been used [17, 18, 26]. An notable exception is the proposed method of
Lai et al., where a video is treated as a bag-of-frames, and event recognition is handled as a
multi-instance learning problem [11].

The current state-of-the-art video representation is the Fisher Vector over motion bound-
ary histograms from improved dense trajectories [27]. For few example recognition on chal-
lenging web videos from the TrecVID multimedia event detection dataset [19], the approach
by Wang and Schmid [27] was further improved by learning a compact semantic embed-
ding [6] from auxiliary data. The latter method has been shown mainly effective for recog-
nition using only 10 examples, the performance difference decrease for recognition using
more examples. While we also obtain a compact representation, we do not require addi-
tional training data to learn the embedding. Moreover, our approach can model the variation
over time explicitly.

Besides reporting results on TrecVID MED [19], we also report on the frequently used
Columbia Consumer Video dataset introduced by [9]. To the best of our knowledge these are
the largest publicly available video corpora in the literature for event recognition containing
user-generated videos with a large variation in quality, length and content.

Fisher Vector Representation The Fisher Vector representation was introduced as an
alternative to the Bag-of-Words image representation [22, 24]. Subsequently, it has been
used for video classification, for which it is currently the state-of-the-art representation [27].
Over the years, many extensions have been proposed to the Fisher Vector framework, from
which we highlight a few directions. First, the idea of using multiple layers of Fisher Vec-
tors [21, 25] is similar in spirit to the proposed Event-FV. Indeed, while we use DeepNet
features as input for our Event-FV, we could equally well have used a sequence of Fisher
Vectors as input. Second, the idea of encoding the spatial coordinate of local patches [23]
is similar to encoding the temporal axis of a stream. In its most basic form it would induce
using d−1 dimensions for the PCA projection, and adding a temporal scalar. We have con-
ducted preliminary experiments according to this temporal coordinate coding scheme, but
the results where disappointing. We believe this is caused by the combination of the higher
dimensional features (even after PCA projection we use a few hundreds of dimensions), with
the fewer mixture components used in our models compared to [23]. Finally, the idea of us-
ing non-iid generative models has been explored for image classification in [4]. While we
also use non-iid models, we base them on the temporal structure of our visual streams.
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3 Event Fisher Vector
In this section we describe the Event Fisher Vector (Event-FV) encoding for a visual stream.
Our encoding is based on the Fisher Kernel [8] and bears a resemblance to the Fisher Vector
image representation [24]. We assume that the images of a stream can be modelled by a
probability density function p(·|θ) with parameters θ . Let X = {x1, . . . ,xn} denotes a stream
of n images, where each image i is described by the image descriptor xi. Then, the Fisher
score of the stream is given by the gradient of the log-likelihood w.r.t. the parameters:

GX
θ = ∇θ log p(X |θ) (1)

and describes how the parameters of the model contribute in the generative process. These
Fisher scores can be used in linear classifiers, after transformation with the Fisher Informa-
tion Matrix (FIM), Fθ = EX∼θ [GX

θ
GX

θ

>
]:

G X
θ = F

− 1
2

θ
∇θ log p(X|θ), (2)

This transformation ensures invariance w.r.t. re-parametrisation of the probabilistic model.
The Fisher Vector image representation [24] encodes local SIFT features using a GMM

as probabilistic model and a closed-form approximation of the FIM. In contrast, we focus
on encoding a visual stream of images, where each image is described by a single feature,
in our case extracted from a DeepNet [10, 30]. Moreover, we explore different generative
encodings and provide analytical approximations of the FIM for these probabilistic models.

3.1 Student’s-t Mixture Model

A problem with the Gaussian mixture model is that it is highly effected by the presence of
(a small number of) outliers. While this is not a problem when encoding a set of approxi-
mate 10K local descriptors, as in the Fisher Vector image encoding, it becomes a problem
when encoding an image stream consisting of around 50 images each. In order to make our
model more robust against outliers, we replace the Gaussian distribution with a Student’s-t
distribution, which is known for its heavier tails [1, 20], see also Figure 2.

The Student’s-t mixture model for observation xi ∈ RD is defined as:

p(xi|θ) = ∑
k

πk St(xi|θk), (3)

where πk is the mixing weight and the Student’s-t distribution is parametrised by θk =
{µk,σk,νk}, with µ representing the mean, σ the diagonal co-variance matrix and ν the
degrees-of-freedom. The Student’s-t distribution for component k is defined by:

St(xi|θk) = Zk

(
1+ 1

νk
δk(xi)

)− νk+D
2

, (4)

with Mahalanobis distance δk(xi) = ∑d(xid−µkd)
2/σ2

kd and Zk is the normalisation factor:

Zk =
Γ( νk+D

2 )

Γ( νk
2 ) (πνk)

D
2 |σ2

k |1/2
, (5)
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Figure 2: Illustration of
the Gaussian and Student’s-
t distribution: showing the
heavy tails of the probabil-
ity density function for var-
ious values of ν .

with the gamma function Γ, and the mathematical constant π . The Fisher score w.r.t. the
mean µk is given by1:

GX
µk

=
νk +D
σ2

k νk

n

∑
i=1

γi(k)
(xt −µk)

1+ 1
νk

δk(xi)
, (6)

where γi(k) =
πk St(xi|θk)

∑k πk St(xi|θk)
is the responsibility value of the k-th Student’s-t mixture com-

ponent [1]. Similar to the GMM this Fisher score is also a weighted average of the ob-
servations, where each observation is weighted by its responsibility γi(k). However, two
important differences are (i) that the responsibility values γ are now based on the Student’s-t
mixture model, and (ii) each observation is also weighted by the Mahalanobis distance w.r.t.
component k and the degrees-of-freedom νk.

3.1.1 Analytical Approximation of the Fisher Information Matrix

Perronnin et al. [22, 24] showed that the Fisher information matrix (FIM) for the GMM is
diagonal, under the following assumptions:

Hard-assignment assumption. When all patches are sharply peaked around a single com-
ponent k (i.e. ∀i ∃k γk(i) ≈ 1), the off-diagonal entries in the FIM are zero if they
involve mean or variance parameters from different mixture components, or if they
involve the mixing weight parameter and a mean or variance parameter.

Diagonal covariance assumption. Using diagonal covariance matrices in the GMM makes
the Fisher scores independent per dimension and therefore the cross-terms in the FIM
for the mean and variance of the same component are zero.

The resulting analytical approximation yields, for the mean parameter: F
− 1

2
µk = σk π

− 1
2

k [24].
In contrast, the dimensions of the Fisher scores of the Student’s-t model are interde-

pendent due to the Mahalanobis distance δk(xi) in Eq. (6). In order to derive an analytical
approximation, we propose the following assumption:

Constant distance assumption. We assume that in expectation, the Mahalanobis distance
δk(xi) becomes a constant factor, which makes the Fisher score per dimensional in-
dependent. This assumption is based on the concentration of distances theorem [31]
which states that for high dimensional data the proportional distance difference be-
tween any point and the mean of all data points vanishes. Intuitively, this theorem
states that the distance differences δk(xi), for k = {1, . . . ,K} for a specific data point
xi are immaterial. We illustrate the distances for our visual data in Figure 3.

1For clarity of presentation we address only Fisher scores w.r.t. the mean parameter.
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FIGURE 5.2: Histogram showing the distance of all datapoints to its assigned cluster on
MED13 (left) and CCV (right).

distance of all datapoints to its assigned cluster. Indeed, we see that the distance is fairly

similar for most dataspoints. On the MED13 dataset are 87% of the datapoits between 14 and

28, i.e. the assumed constant c is changing less than factor two and even 99% between 10 and

40 where c is changing less than factor four. Similarly, on the CCV dataset we have 89% of

the datapoints between 4 and 8 and 99% between 3 and 12; changing the constant c by less

than factor two and four, respectively. The absolute difference of the constant c between both

datasets is due the the usage of the optimal dimensionality, d = 2048 for MED13 and d = 512

for CCV.

Furthermore, we note that the sequential encoding models (HMM and StHMM) outperform

the independent image models when the identity approximation is used. Unfortunately, these

improvements vanish when the empirical or analytical approximations are used. Likely, this

is caused by the fact that the diagonal Fisher information approximations are not valid in the

sequential models, due to the dependencies between the frames (or images).

Conclusions from this exploration From this section we conclude the following properties

of the Meta-FV:

• The dimensions d and mixture components k depend on (the size of) the dataset, though

not on the generative model. Further more, supervised dimension reduction does not

improve over PCA. From now on we use PCA and the parameters PEC (256,8), CCV

(512,16), and MED13 (2048,8) for all models.

• For the high dimensional Meta-FV the gradient w.r.t. the mean performs close to opti-

mal, therefore we use this for the remaining experiments.
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Figure 3: Histograms
showing the distance
between datapoints and
cluster centres on the
two used video-datasets.
99% of the data is within
a distance ratio of 4,
confirming the appropri-
ateness of the constant
distance assumption.

This results in the following analytical approximation for the mean component of the FIM:

F
− 1

2
µk = σk

(
πk

νk
νk+D

)− 1
2
. (7)

Which is somehow intuitive, since it is similar to the approximation for the GMM, but in-
cludes a weighing with the degrees-of-freedom νk. To the best of our knowledge, this is the
first closed-form approximation of the Fisher information matrix for the Student’s-t mixture
model. Note that the assumptions above are only used to derive the analytical approximation
of the FIM, not for computation of the Fisher scores.

3.2 Sequential Modelling of a Visual Stream
In this section we propose to model the temporal relationship among images in a stream,
using a Hidden Markov Model (HMM). While the independent mixture models, discussed
above, ignore the temporal structure of the visual stream and treat each image as an indepen-
dent observation, the HMM models encode the temporal relation explicitly.

The temporal relation in the HMM is modeled by the latent state zi, which depends not
only on the observation xi, but also on the latent variable zi−1 of the previous observation.
The probability of a sequence X is given by:

p(X |θ) = ∑
Z

n

∏
i=1

p(zi|zi−1)p(xi|zi), (8)

where p(zi|zi−1) models the transitional probability, parametrised by the transition matrix
A ∈ Rk×k, and the vector πk ∈ R1×k for the initial state distribution; and p(xi|zi) models
the emission probability, for which we use either the Gaussian distribution N (xi|θk) or the
Student’s-t distribution St(xi|θk).

The Fisher score w.r.t. the mean µk, using the Gaussian distribution is given by:

GX
µk

= ∑
Z

p(Z|X) ∇µk log p(X ,Z|θ) (9)

=
n

∑
i=1

γi(k) ∇µk log p(xi|θk) =
n

∑
i=1

γi(k)
(

xi−µk

σ2
k

)
, (10)

this is identical to the Fisher score of the GMM [24], except that the responsibility values
γi(k) are now computed by:

γi(k) =
p(x1, . . . ,xi,zi=k) p(xi+1, . . . ,xn|zi=k)

p(X)
, (11)
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which reflects the dependence among the images in the collection. These responsibility
values can be efficiently computed using the forward-backward algorithm [1]. Similarly, the
Fisher scores for the HMM with the Student’s-t emission distribution are given by Eq. (6),
using the HMM responsibility values γi(k).

Approximating the Fisher Information Matrix The Fisher scores in the hidden Markov
models differ from the independent image mixtures only by the definition of the responsi-
bilities γi(k). Resorting again on the hard-assignment assumption, i.e. all observations are
sharply peaked around a single state k, we obtain the same closed form approximations as
used in the independent GMM and StMM models. To the best of our knowledge, we are
the first to propose an analytical approximation of the FIM for HMMs. We are aware that
we use a very crude approximation, the HMM even explicitly models the observations as
interdependent. However, our experimental evaluation, see Section 4.2, shows that this ap-
proximation is sufficient and clearly outperforms the commonly used identity and empirical
approximations. Note, again, that the assumptions are only used to derive analytical approx-
imations of the FIM, not for computation of the Fisher scores.

4 Experimental Evaluation

4.1 Datasets and Setup
Photo Event Collection (PEC) [2] This dataset was introduced in 2013 as benchmark for
event classification from Flickr photo collections. It consists of 14 social event classes, e.g.
Birthday, Christmas, Hiking, Halloween, and 807 photo collections with in total over 61K
photos. We use the suggested experimental setup: per event 30 collections are selected for
training and 10 for testing. Performance is evaluated using mean class accuracy (MCA).

TrecVID Media Event Detection (MED13) [19] This dataset was part of the 2013 TrecVID
benchmark task on Media Event Detection. We follow the 100Ex evaluation procedure in
our experiments. With over 10K training and 27K testing videos this is one of the biggest
datasets for event detection in video. In our experiments we focus on the visual aspect of the
videos and therefore use only visual frame-based features. Performance is evaluated using
mean average precision (MAP) over the 20 events.

Columbia Consumer Video (CCV) [9] This dataset contains over 9K user-generated
videos from YouTube, with an average video length of 80 seconds. The dataset comes with
video level ground-truth annotations for 20 semantic categories, 15 of which are events while
the other 5 are objects or scenes classes. We use the split suggested by the authors which
consists of 4,659 training videos and 4,658 test videos. Performance is evaluated using mean
average precision (MAP) over the 20 categories.

Extracting Event Fisher Vectors For each image in a stream we extract visual features
from a pre-trained DeepNet [10, 30], we use an in-house implementation of [30], trained
on 15K ImageNet classes from the fall 2012 release [5]. As is common practice, we use the
output of the final fully connected layer of the DeepNet, resulting in a 4K dimensional vector
which is whitened per dimension (i.e. to obtain zero-mean an unit variance). For the PEC
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FIM GMM StMM HMM StHMM

Identity 27.6 27.2 28.2 28.5
Empirical 34.7 34.6 34.5 33.8
Closed form 36.8 37.2 36.6 36.8

GMM StMM HMM StHMM BPE

PEC 80.7 85.7 83.6 80.7 88.6
MED13 36.8 37.2 36.6 36.8 38.0
CCV 67.4 69.0 66.2 66.5 69.1

Table 1: Overview of different approximations for the Fisher Information Matrix on MED13
(left), and comparison of the proposed generative encodings for all datasets, including the
oracle ‘best per event’ (BPE) score (right)

dataset we use all photos belonging to a collection, while for the video streams we sample a
frame every 2 seconds.

For the Event-FV we obtain the parameters of our generative models by maximum like-
lihood estimation on the training set. We fix the values for the degrees-of-freedom to ν = 10
and use standard expectation maximisation algorithms. Following common practice we ap-
ply power-normalisation and `2 normalisation before training SVM classifiers.

PCA and Mixture Components Two key parameters of any Fisher Vector representation
is the number of PCA dimensions and the number of mixture components. We have per-
formed a rather exhaustive search in preliminary experiments. In general it holds that PCA
is helpful, unsurprisingly since it decorates the input space which matches the diagonal co-
variance assumption used. Moreover, there seems to be a correlation with the dataset size
and the number of dimensions and components. For all experiments we use PEC (256,8),
CCV (512,16), and MED13 (2048,8). The number of mixture components used here is
much lower than used for image classification [24], we believe this is because of the highly
discriminative DeepNet features and the relatively high number of PCA dimensions used.

Moreover, we have experimentally validated that using the Event-FV w.r.t. the mean only
has the best performance vs dimensionality ratio, see Figure 4 (left).

4.2 Approximations of the Fisher Information Matrix
In this experiment we study the influence of the Fisher information matrix approximations,
and compare the proposed analytical approximation to two comment FIM approximations:
(i) the identity matrix, since asymptotically the Fisher information matrix is immaterial [8];
(ii) the diagonal empirical approximation, which results in a whitening of the signal for the
diagonal [1], i.e. each dimension will have zero-mean and unit-variance.

The results are presented in Table 1 (left), for all four different generative models on the
MED13 dataset, using k = 8 and d = 2048. First, we observe that for all generative models
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the behaviour is very similar; approximating the Fisher information matrix with the identity
matrix performs worst (MAP∼ 27%), the empirical estimation brings a strong improvement
to ∼ 34% and finally the analytical approximation increases performance to ∼ 37%. For the
GMM model, our results are in line with the findings of [24], where the analytical approx-
imation also obtains best performance. While we have made strong additional assumptions
for the closed form approximations, the resulting approximation works well in practice.

Furthermore, we note that the sequential encoding models (HMM and StHMM) outper-
form the independent image models when the identity approximation is used. Unfortunately,
these improvements vanish when the empirical or analytical approximations are used. Likely,
this is caused by the fact that the diagonal Fisher information approximations are not valid
in the sequential models, due to the dependencies between the frames (or images).

4.3 Robustness against Number of Samples

One of the main motivations of using the StMM model is it robustness towards outliers
in the case that the FV is extracted from just a few observations. In this experiment we
aim to testify this hypothesis, by varying the number of frames sampled from a video. We
randomly subsample a given number of frames from each video of the CCV dataset and then
employ the Event-FV using the StMM as probabilistic model, using different values for ν .
The results are given in Figure 4 (right), where the relative performance w.r.t. to the GMM
is shown. Note that the absolute MAP performance of the GMM drops from ∼ 67 when
sampling all video frames (on average the dataset contains 51 frames per video) to around
∼ 45 MAP when sampling just a single frame per video. However , the relative performance
increase of the StMM model confirms the robustness.

4.4 Performance of Different Generative Models

In Table 1 we evaluate the performance of the different encoding methods for all three
datasets. In all cases the StMM performs best, showing that it is important to model the
heavy tails of the emission probability. For the two video datasets (CCV and MED13) the
GMM model is second best, while for the PEC dataset the HMM models is second best.

We observe, that the performance of the different encodings per event varies quite sig-
nificant, see also the per class AP scores in the supplementary material. Therefore, we also
evaluate the performance if an oracle could give the best model per event. From the results in
Table 1, we observe that for all datasets the StMM performance is close to the performance
of the oracle model. Indicating it is not worth the effort to try to predict which model to use
for each event, instead we will use the StMM model to compare to the state-of-the-art.

4.5 Comparison with State-of-the-Art

In this last set of experiments we compare our proposed method to alternative event recogni-
tion approaches, including the Mean DeepNet (MDN) baseline, which averages the DeepNet
descriptors of the images from a stream. We use the Event-FV using the StMM generative
model, and, inspired by [21, 25], also the concatenation of Event-FV and MDN; as well as
temporal pyramids (TP), inspired by the spatial pyramids [3, 12] by extracting Event-FVs
over the whole stream, and over three non-overlapping subsequent parts of the stream. This
results in a total of four Event-FVs, each of which is power- and `2-normalised.
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Method MCA F1

Baseline [2] 41.4 38.9
Stopwatch [2] 55.7 56.2
StMM (features [2]) 60.0 60.5

MDN 79.3 80.3
StMM 85.7 85.8

+ MDN 85.7 85.8
+ TP 82.9 82.9

(a) PEC Dataset

Method MAP

Ye et al. [29] 64.0
Liu et al. [13] 69.5
Wu et al. [28] 70.6

MDN 66.3
StMM 69.0

+ MDN 71.4
+ TP 71.7

(b) CCV Dataset

Method 100Ex 10Ex
MAP MAP

Baseline MBH [27] 31.5 17.4
Habibian et al. [6] 32.0 19.6

MDN 28.6 16.6
StMM 37.2 21.3

+ MDN 37.7 21.7
+ TP 38.6 21.8

(c) MED13 100Ex and 10Ex

Table 2: Comparison of the Event-FV performance to current state-of-the art methods.

For the PEC dataset, the overview is presented in Table 2a. Since the PEC dataset is
rather new, we can only compare to methods of [2], and we include an experiment using their
provided features. From the results, we first observe that our MDN baseline outperforms all
of the methods proposed by [2]. Second, we note that even when using the same image
features, our Event-FV outperforms their results significantly.

For the CCV dataset, the overview is presented in Table 2b. On this dataset plenty of
methods have been evaluated, using the provided features of [9], therefore we show only
the highest performing ones. While our MDN is a decent baseline, the Event-FV and the
Event-FV + TPs outperform any of the previous methods.

For the MED13 dataset, the overview is presented in Table 2c, where we also show the
results for the 10Ex task, with just 10 positive train examples per event. Again, our MDN
is a decent baseline, and our Event-FV clearly outperforms the MBH performance and the
VideoStory encoding [6], for both the 10Ex and the 100Ex task. Finally, for this dataset
extracting TPs increases performance further by about 1% MAP.

5 Conclusion

In this paper we have introduced the Event-FV to represent visual streams for event recogni-
tion. We have argued that the Student’s-t mixture model is more appropriate for a small set of
observations, than the commonly used GMM. For the StMM model we have derived a closed
form approximation for the Fisher information matrix for this model, which experimentally
outperforms the identity or empirical approximation. Finally, we also have explored Hidden
Markov models which explicitly model the sequential order of the stream.

We have conducted experiments on three recent datasets and showed that the analytical
approximations of the FIM outperform an identity or empirical approximation by a large
margin, that the StMM model has a slight edge over the other explored models, and that
it results in state-of-the-art performance. This indicates the advantage of using appropriate
probabilistic models within the Fisher vector and to derive their analytical FIM approxima-
tions. We conclude, for the task of visual event classification capturing the heavy tails of the
small sample size is more beneficial than modelling the temporal relation of the stream.
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