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The goal of this paper is to design an effective representation for event
recognition in visual streams, such as photo collections and video clips.
We are inspired by the success of Fisher Vectors for the encoding of im-
ages and videos, where a Gaussian mixture model (GMM) is used as gen-
erative probability density function to model 10K-100K local observa-
tions per image or video. A visual stream, however, behaves significantly
different than local patches or trajectories. Most notably, streams may
consist of just tens to hundreds of images, each image in a stream can be
described by more discriminative DeepNets, and the temporal structure of
the stream can be modelled explicitly.
In order to be more robust against outliers in the small set of observations,
we replace the GMM with a Student’s-t mixture model (StMM), known
for its heavier tails. For observation xi ∈ RD, the StMM is defined as:

p(xi|θ) = ∑
k

πk St(xi|θk), (1)

where πk is the mixing weight and the Student’s-t is defined using param-
eters θk = {mean µk,var σk,dof νk} as:
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with Mahalanobis distance δk(xi) and normalisation factor Zk. The Fisher
score, i.e. the derivative w.r.t. the parameters of log p(·;θ) is than:
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where γi(k) is the responsibility value of the k-th mixture component. This
score function is, similar to the GMM case, a weighted average of the
observations. However, two differences are: (i) the responsibility values
γi(k) are now based on the StMM, and (ii) each observation is weighed
by the degrees-of-freedom νk and the Mahalanobis distance δk(xi).
For image classification and retrieval, these Fisher scores are transformed
with the Fisher Information Matrix (FIM), Fθ = EX∼θ [GX
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>
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sure invariance w.r.t. re-parameterizations of the model. Perronnin et al.
derived an analytical approximation of the FIM for the GMM, by using
the following two assumptions:

Hard-assignment assumption. All patches are sharply peaked around a
single component k (i.e. ∀i ∃k γk(i)≈ 1).

Diagonal covariance assumption. Using diagonal covariance matrices
in the GMM yields the Fisher scores independent per dimension.

In contrast, the dimensions of the Fisher scores of the StMM are inter-
dependent due to the Mahalanobis distance δk(xi). In order to derive an
analytical approximation, we propose the following assumption:

Constant distance assumption. We assume that in expectation, the Ma-
halanobis distance δk(xi) becomes a constant factor. This assump-
tion is based on the concentration of distances theorem, which
states that for high dimensional data the proportional distance dif-
ference between any point and the mean of all data points vanishes.
Intuitively, this theorem states that the distance differences δk(xi),
for k = {1, . . . ,K} for a specific data point xi are immaterial.

This results in the following approximation for the mean component:
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To the best of our knowledge, this is the first closed-form approximation
of the Fisher information matrix for the Student’s-t mixture model. Note
that the assumptions above are only used to derive the analytical approxi-
mation of the FIM, not for computation of the Fisher scores.

To model the temporal structure of a visual stream, we also propose to use
Hidden Markov Models (HMM). The temporal relation in the HMMs is
modeled by the latent state zi, which depends not only on the observation
xi, but also on the latent variable zi−1 of the previous observation. The
Fisher score of an HMM model w.r.t. the mean µk is given by:
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γi(k) ∇µk log p(xi|θk), (5)

this is identical to the independent models, except that the responsibility
values γi(k) are now computed by:

γi(k) =
p(x1, . . . ,xi,zi=k) p(xi+1, . . . ,xn|zi=k)

p(X)
, (6)

which reflects the dependence among the images in the collection. For the
analytical approximation of the FIM we use once more the crude hard-
assignment assumption and obtain the same analytical FIM approxima-
tions as for the independent GMM and StMM models.

Different FIM approximations on MED13

FIM GMM StMM HMM StHMM

Identity 27.6 27.2 28.2 28.5
Empirical 34.7 34.6 34.5 33.8
Closed form 36.8 37.2 36.6 36.8

Different models (incl. oracle best per event)

GMM StMM HMM StHMM BPE

PEC 80.7 85.7 83.6 80.7 88.6
MED13 36.8 37.2 36.6 36.8 38.0
CCV 67.4 69.0 66.2 66.5 69.1

We evaluated our Event-FV on three recent datasets of photo and video
events: Photo Event Collection (PEC, event classification from Flickr col-
lections), TrecVID Media Event Detection (MED13 benchmark with 100
examples per event for training), and Columbia Consumer Video (CCV,
Youtube videos of events). For each image in a collection (or sampled
frame from a video) we extract the final fully connected layer (4K) from
a pre-trained DeepNet (trained on 15K ImageNet classes).
The conducted experiments show that the analytical approximations of
the FIM outperform an identity or empirical approximation by a large
margin, that the StMM model has a slight edge over the other probabilistic
models, and that it results in state-of-the-art performance (when combined
with the Mean DeepNet feature and Temporal Pyramids, see paper). This
indicates that it is worth to explore more appropriate probabilistic models
for the input data within the Fisher vector framework and to derive their
analytical FIM approximations. For the task of visual event classification
the conclusion is that capturing the heavy tails of the small sample size is
more beneficial than modelling the temporal relation of the stream.


