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Abstract

This paper brings significant contributions to the field of pedestrian detection by
learning probabilistic dependencies and contextual information that draw special atten-
tion to the human body characteristics and silhouette shapes and play down other ir-
relevant features. More precisely, we introduce the NAMC (Normalized Autobinomial
Markov Channels) and study the efficiency of different configurations of cliques, provid-
ing a detailed experimental evaluation. Our proposed features outperform most of the
solutions that have laid the foundations of pedestrian detection [2, 17]. Moreover, if we
combine our novel features with gradient-based descriptors [15] and apply an efficient
local decorrelation algorithm [30] to each channel, our results outperform the major-
ity of the state-of-the-art solutions currently present in the Caltech Pedestrian Detection
Benchmark [13]. We focus on a thorough analysis of the proposed feature model using
the INRIA Pedestrian Dataset [10] as a benchmark to evaluate various parameter settings.

1 Introduction

Pedestrian detection represents one of the most important components of engineering de-
vices that use automated vision to help decision systems take quick and accurate actions.
Nowadays, such systems are defined and customized to be useful for different needs, such as
monitoring and aided surveillance, or increasing safety features in automotive industry.

Given the large spectrum of applications that use pedestrian detection, demand has in-
creased in recent years for the development of feasible solutions which can be integrated in
devices such as smartphones, tablets, as well as professional and consumer cameras.

There are two main factors that contribute to the performances of object detection algo-
rithms. The first one is the learning algorithm they use. Examples include AdaBoost [38],
Boosted Trees [1, 15, 28], linear SVMs [10, 24] or latent SVMs [18, 19, 34], discriminative
deep models [31, 32], Random Forests [27], and LogitBoost [37]. The second factor is the
feature design and representation method. Well known examples include Haar [38], HOG
[10, 19, 27, 31, 34] and channel features [1, 12, 15, 28, 30].

In our algorithm, we use a standard boosted cascade of trees [36] and focus on finding
probabilistic features that highlight the human body characteristics regardless of contextual
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Figure 1: a) Feature representation. Several registered channels have been computed using
different transformations of the input RGB image. The initial image has been converted to
CIE-LUV color space to compute the NAMC (normalized autobinomial Markov channels),
and to GRAY to obtain the GM (gradient magnitude) and GHs (gradient histograms). b)
Local decorrelation. Multiple decorrelation filters have been learned separately for each
channel feature and then applied to the corresponding channels. ¢) Cascade of boosted
trees. The classification is based on a cascade of boosted trees, where each node examines a
feature value in a certain channel and each leaf returns a score.

information in images. Information in images is often spatially correlated, which means that
adjacent values are likely to have similar values. For this reason, our method employs only
close neighbouring pixels for the probabilistic description of our target object. We propose to
learn the local dependencies in the image channels and also between pairs of pixels coming
from different channels and convert them into a probability space that fully respects the
Markov property for a given local specification. A statistical model that respects all these
requirements and best fits the multidimensional characteristics of the data can be found in
the scientific literature as MRF (Markov Random Fields) theory.

Markov random fields are widely used probabilistic models providing a basis for mod-
elling contextual constraints in visual processing and interpretation, since they allow the in-
tegration of prior knowledge of images and scenes. The foundations of the theory of Markov
random fields was laid in the early *70s [29, 35, 39], but due to their generic nature, they
have found widespread use across image processing, and in particular for image restoration
[20, 40], denoising [8, 25], segmentation [23, 26] and texture classification [3, 7, 9].

While much of this work could apply to other areas of computer vision as well, we focus
on generic Markov random fields models and apply them in pedestrian detection.

Recent years have brought significant results in pedestrian detection, and several ap-
proaches using boosted trees and channel features have achieved state-of-the-art results on
major benchmarks.

Our paper is based on Dollér’s et al. [15] work, which involves learning a cascade of
boosted trees from a feature space that consists of channel features such as image channels,
gradient magnitude and gradient histograms. The main purpose of Dollar et al. [15] pa-
per has been related to feature scaling. The author has proposed a method to approximate
channel features for various scales by extrapolating from nearby ones, rather than explicitly
computing them. Starting with the assumption that spatially decorrelated features could pro-
duce better results, Woonhyun et al. [30] have proposed a method for learning decorrelation
filters matching each channel feature.
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We propose a novel set of channel features based on autobinomial Markov-Gibbs random
fields (see Fig. 1). Moreover, we include optimizations for fast feature calculation, and test
a random selection method for the neighbourhood system. In the same way as Woonhyun
et al. [30], we get specialized decorrelation filters matching our newly introduced channels.
We use Dollar’s [16] implementation of the learning algorithm and his scaling method to
speed up the scanning process.

The remainder of this paper is organized as follows. Sec. 2 begins with an introduc-
tion of channel features, gives a detailed overview of our normalized autobinomial Markov
channels with implementation details, and briefly describes channel features such as gradi-
ent magnitude and gradient histograms, as well as algorithms for feature pyramids and local
decorrelation used in our autobinomial model. In Sec. 3 we argue the choice of boosting
method. A detailed experimental evaluation of the quality of the results is performed in
Sec. 4. Conclusions and ideas for future work are given in Sec. 5.

2 Channel Features

The decision to use a particular learning algorithm is highly dependent on the application.
This choice can be influenced by several factors, such as the need of having a quick rejection
or otherwise a good performance measured at the end of the scanning process. When choos-
ing which features to use in a solution, both the computational cost (that can affect the speed
of the algorithm), and the memory space (required to store all channel features at different
scales) are highly important. The performance of the whole detector is directly influenced by
the performance of each feature apart. One of the most important aspects related to features
is their ability of separation between positive and negative classes.

A channel feature can be seen as an image, meaning that it is a function of the same
spatial variables as the initial image. However, pixel values hold knowledge about image
features (e.g. weighted averages, gradient magnitudes, gradient orientations) instead of lu-
minance intensity or color.

In case of pedestrian detection applications, extracting only one type of feature may
not be enough to get relevant information from the image data. As an alternative, several
different features are extracted from the image, resulting in more channel features at each
image point.

2.1 Normalized Autobinomial Markov Channels

Let us consider that X = {X¢ }yecq is a random process defined on a probability space
(Q,F,P) where Q is a finite set that refers to the pixel’s locations in the image configu-
ration, with elements denoted by & and called sites. Let F be a finite set, called the phase
space, that refers to all possible values of the pixels in a spectral plane, and P the assignment
of probabilities for each location.

A neighbourhood system on Q is a family N = { ¢ bweeq of subsets of Q such that for
all § € Q assite is not neighbouring to itself & ¢ N, and the neighbouring relationship is
mutual n € Ne & & € Ny,

Markov Property: The Markov Property says that given the set of neighbours Ng,
the variable & is conditionally independent of all variables in the random field except the

neighbours, so the probability P(X,; =% | Xa¢ = yg\;;) = P(Xg =YX N = ,}/./\/'5) for
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all £ € Q, y € F. This means that the distribution of the phase at a site & is directly influenced
only by the phases of the neighbouring sites N; &

The local characteristic of a Markov random field at site £ is defined as the probability to
assign to each pixel & a certain value given the values of all other pixels in the neighbouring
system. In other words 7% (y) = P(X;; =Y | Xn; = }/Né), where 7% : F — [0, 1].

Energy function: An unpublished manuscript written by Hammersley and Clifford [21]
describes how to interpret the local property of a Markov random field in terms of energy and
potential. The proof is found in literature as the Markov-Gibbs Equivalence or Hammersley-
Clifford Theorem and defines the probability at a site & as being:

e ZC9§ Ve (Y)

&) —
T = 1
) Ypcre YeseVel(o,rae)’ M

where V¢ is the potential function, and ¢ € F.

To get the probability that at a site & the state is 7, we need to define a potential function
Ve(y) in the neighbouring system, here denoted by a collection of cliques C. To be able to
do this, we refer to the auto-binomial model that was introduced by Besag [4] to describe
certain types of spatial processes, examining some stochastic models that occur in the texture
of various physical materials.

Potential function: The potential at a certain state is given by:

m( }1,; >+y§ it ¢ = {&)

0 otherwise,

@

where V is a normalization constant equal to the number of sites in the neighbourhood sys-
tem. Detailed explanations of the Markov random fields and Gibbs distribution are found in
Pierre Bremaud’s book[6].

The set of sites is Q = Z*"*4 _and the phase space is F = {0,...,T'}, where m,n,d € N
and I" is the maximum pixel value in a certain color plane. In the context of this paper, a site
& is a pixel, and a phase y € F is a shade of gray.

The neighbourhood system is Nz = {n € Q | n #&,d*(§,n) < &}, where § is a fixed
positive integer and d?(&,7) is the squared Euclidean distance between & and 1.

In this model, the only cliques participating in the energy function are singletons and
pairs of mutual neighbours, the set of cliques appearing in the energy function being a dis-

joint sum of collections of cliques C = Z,?:l Cr.
Feature calculation: If we replace Eq. 2 in Eq. 1, we get the probability assigned to a
local system as being:

2é(y) =2 ( " ) S%(1— o), )

where Z = is a normalization constant, and ¢ = 6(N¢) = (el@B)y /(1 4el@B)),

r
r/2
Here (a, B) is the scalar product of two vectors ¢ and f3 of sizes @(J), and elements in o
normalize the absolute difference of gray levels between pairs of cliques found in the same


Citation
Citation
{Hammersley and Clifford} 1971

Citation
Citation
{Besag} 1974

Citation
Citation
{Bremaud} 1999


TOCA, et al.: NORMALIZED AUTOBINOMIAL MARKOV CHANNELS 5

3-by-3 5-by-5
(] ® o0 0 R0 a8
- 3L - ’;AT
o e ¢ o e o Ll S 2 @ o
o e - - -
[ ] e & 0 e @ T
(a) (b) (©) (d)
1) 1 2 4
w(5) 3 5 7 3

Table 1: Examples of neighbourhood systems. The maximum distance between two sites
{€,n} is denoted by & and (8) represents the number of possible cliques for each local
specification, including only singletons and pairs of mutual neighbours.

neighbourhood of a certain pixel i = Bi(v;) = [1q — Yy, for n # n’, and n,n" € Ng,
where {n,&} and {n’, &} are two pairs in C; containing &.

Implementation details: Each pixel & in the input color plane has been converted us-
ing Eq. 3 to a probability considering a fixed neighbourhood ./\/'5, the same for each color
plane (see Tab. 1.c). To obtain one channel feature that characterizes correlations between
color planes, a simple neighbourhood system has been used (see Tab. 1.d). For corners and
boundaries we only consider the available neighbours.

To avoid an increase of the computational costs, the product of the first two terms in Eq. 3
is pre-computed and quantized on I" values, one for each possible pixel value, and therefore
used as a look-up table. The same can be done for ©.

Regardless of the choice of the sites inside the neighbourhood systems, the normalized
autobinomial Markov channels are strongly invariant if the distance 0 is kept constant. This
fact allows us to randomly choose which site becomes a part of the neighbourhood.

2.2 Local Characteristics of Gradient Magnitude and Gradient
Histograms

Histogram of Oriented Gradient descriptors were first introduced by Dalal and Triggs [10],
who used their algorithm for pedestrian detection in static images. The fundamental idea
behind these descriptors is that local object appearance and shape within an image can be
described by the distribution of intensity gradients or edge directions. Following Piotr Dollar
et al. [15], we adapt the next definitions to our assumptions and notations.

Gradient magnitude: The gradient magnitude at site §, denoted by M (¥ ) and defined

as M(¥g) =/ % N, 52 + g—}/\/ 2, captures undirected edge strength.

Therefore, the orientations have been obtained from previously computed gradients as
being O(£) = arctan (%Ng / %/\/"5) , values that may be quantized in a fixed number of

bins, where each bin 6 accumulates a fixed range of orientations. The orientations are spread
from O to 180 degrees, the half circle being divided into six equal sectors, each one accumu-
lating angles from a range of 30 degrees. To account for variations in contrast and illumi-
nation, the gradient strengths must be locally normalized, which requires grouping the cells
together into larger and spatially connected blocks.

As shown in Piotr Dollar ef al. [15], the normalization of the gradient magnitude M
is made by dividing each pixel by the average of its 11 x 11 neighbourhood, this being
computed by convolving M with an L1 normalized 11 x 11 triangle filter. The author shows
that using the normalized gradient improves the results in the context of object detection.
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Gradient histograms: The gradient histograms are weighted histograms where bin in-
dexes can be determined by gradient angles and then weighted by gradient magnitudes. The
channel features are given by Hg(§) = 6 - M(&), where 6 =1 if O(§) =6, and § =0
otherwise. As shown in Fig. 1, the gradient magnitude channel is computed from luminance,
leading to a set of six gradient histogram channels, one for each of the six orientations.

The inherent difference between gradient histogram channels and histogram of oriented
gradients is that the first employs spatial distribution of orientations at each pixel location,
whereas the latter, accumulating the votes into orientation bins over local spatial regions,
discards spatial information. Keeping spatial gradient information allows an approach for
predicting the behavior of gradients in resampled images without resorting to analytical
derivations that may be difficult and computationally expensive. The idea is exploited in
Dollér’s et al. [14, 15] works, showing that it is possible to create high fidelity approxi-
mations of multiscale gradient histograms using gradients computed at a single scale, and
briefly described in Sec. 2.4, as a general theory applicable to various feature types.

2.3 Local Decorrelation

Each node in our boosted cascade of decisional trees checks one feature at a time, which
means that the data is orthogonally split. However, for highly correlated data it may be more
effective to use oblique splits which involve checking two or more features at a time. This
methodology requires decisional trees that are not limited to binary trees and, consequently,
are much more computational expensive. Breiman’s [5] foundational work on random forests
experimented with oblique trees. To achieve similar advantages while avoiding the computa-
tional expenses of oblique trees, Woonhyun et al. [30] proposed to decorrelate features prior
to applying orthogonal trees. They have shown that orthogonal trees trained on decorrelated
data may be equally or more effective that oblique trees.

Decorrelation is a common pre-processing technique used for classification and cluster-
ing. Inspired from Hariharan er al. [22] who proposed an efficient scheme for estimating
covariances between Histograms of Oriented Gradients with the goal of replacing linear
SVMs with LDA and thus allowing for fast training, Woonhyun et al. [30] have shown that
significant improvements are brought if the channel features are decorrelated after they were
effectively computed.

To obtain the decorrelated channel features, for each patch p of a fixed size in the channel
features, the covariance matrices X should be computed. Woonhyun et al. [30] proposed to
compute a single fixed covariance matrix X for each channel, shared across all local channel
neighbourhoods, under the assumption that the statistics of natural images are transitionally
invariant. The covariance between two features should depend only on their relative offset.
For every patch we can create a decorrelated representation of the features by computing
QTp, where QAQT is the eigendecomposition of X.

The authors have shown that using 4 eigenvectors per channel for patches of size 5 is
sufficient, and have argued that the projection Q”p can be computed by a series of 4 convolu-
tions between a channel image and each learned 5 x 5 filter reshaped from its corresponding
eigenvector (column of Q matrix). This is possible because the covariance matrix X is shared
across all patches per channel and hence the derived Q is spatially invariant.

Fig. 1 shows the results of the convolution between an image and the four decorrela-
tion filters that have been learned for normalized autobinomial Markov channels. For each
channel, a set of 4 decorrelation filters of size 5 x 5 pixels were learned from training sets
and applied in both training and scanning processes. To fairly compare the performance of
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using locally decorrelated channels over the original ones in the feature selection process,
each decorrelated channel has to be downsampled by 2 which means that the total number
of features is 4 times smaller and so equal to the initial feature space.

2.4 Scaling Features

To speed up the scanning process, we compute the channels only for the native resolution
Q;, and approximate them to other twenty four scales € by using Piotr Dollar’s et al. [14]
feature pyramids. A feature pyramid is a multi-scale representation of an image €2, where
channels are computed at every scale s.

As explained in the previously mentioned work, the channels for different scales may
be extrapolated from nearby scales by weighting the values from the original scale with
an empirically determined ratio u, each channel type having its own corresponding ratio.
The factor u represents the mean of a distribution of overall divisions between the original
channel’s values and the ones computed explicitly for a scale s.

Note that here for each of the two scales the channel features were explicitly computed,
and therefore, to be able to make any sum between the correspondent locations they have
been brought at the same scale. By upsampling we do not lose information, but when an
image is downsampled many of the high frequencies are cut.

The best scenario is to bring both images at the least common multiple, but this alter-
native is not used in practice. The ratio is exponentially dependent of s being defined as
Ly = flge ", where g is an artefact of the bilinear interpolation.

To estimate 7 and [l the author used a least squares fit of the exponential function to the
twenty four means computed explicitly over a set of images, one for each scale.

3 Boosted Trees

Over the past few years the algorithms for boosting trees have evolved from the application
of boosting methods to regression trees. The general idea is to compute a sequence of simple
trees as being weak classifiers, where each successive tree is built for the prediction residuals
of the preceding tree. Fig. 1 allows a broad view of a cascade of boosted trees and lists its
major components.

This method builds binary trees by partitioning the data into two sets at each split node
which implies that at each step of the boosting, a best partitioning of the data is determined,
and the deviations of the observed values from the respective means are computed and the
scores of each leaf are set. The next tree in the cascade will then be fitted to those residuals,
to find another partition that will further reduce the residual variance for the data, given the
preceding sequence of trees.

Learning algorithm: The learning algorithm we use is represented by such a cascade
of boosted trees, where each binary tree has a maximum depth of two levels, leading to a
maximum of three decisional nodes and four leaves.

In the training process, for each decisional node, both a channel identifier and the offset
in that channel that has the minimum separation error between positive and negative samples
are assigned. Each leaf returns a positive or negative value which is added to the overall
sum when scanning a certain window. When the sum drops below the cascade threshold, the
window is rejected. Particularly, the training process consists of a couple of stages gradually
increasing the number of weak classifiers and bootstrapping negatives after each stage.
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Learning the classifiers in more stages helps to bootstrap negative samples between each
training stage. This means that after each stage is trained, more negative samples are added
to the initial set by testing the previously learned cascade of trees on new negative samples
and keeping those that were misclassified.

4 Experiments and Performance Evaluation

In this section we discuss the effectiveness of using the normalized autobinomial Markov
channels. We evaluate the performance of different configurations, such as various color
spaces (GRAY, RGB, HSV, CIE-LUV), lower and higher distance conditions (that influence
the number of the neighbourhood systems, one channel being acquired for each neighbour-
hood system), features computed on a certain color plane or between channels, with and
without smoothing.

The current practice is to use the INRIA Pedestrian Dataset for training and testing, even
if it is amongst the oldest and has comparatively few images. However, it benefits from high
quality annotations of pedestrians in diverse settings and scenarios.

NAMC Color Channels | GM | GH Smooth LD Log-Avg.
Gray | Color | Multispectral 3 1 6 x4 MR
1 3 1 [4-103—10"']FP
NAMC+ v v v v v v v 15.57%
NAMC-LDCF-4C v v v v v v 15.84%
NAMC-LDCF-1C v v v v v v 17.08%
NAMC-ACF-8C v v v v v 18.82%
NAMC-ACF-4C v v v v v v 19.8%
[NAMC \ T v [ 7 T [ [ 7 [ 7] 50.56% \
NAMC-4C-LUV v v 68.8%
NAMC-4C-RGB v v 96.21%
NAMC-4C-HSV v v 96.42%
ACF [15] v v v v 22.38%
LDCF [30] v v v v v 17.45%

Table 2: Performance Evaluation. From left to right each column refers to the feature type,
and the corresponding number of channels. For those that use color channels, we refer to
LUV color space, therefore GM comes from gradient magnitude, while GH are the gradient
histograms. A smoothing may be applied across the channels, and channel features may be
LD (locally decorrelated) or not. The MRs (miss rates) have been obtained by averaging
only the results in the [4- 1073 — 10’1] interval of FP (false positive) rates.

We have chosen to evaluate pre-trained detectors but also re-trained some of them, mainly
those that we have been interested to improve [15, 30] by using our proposed features, or
those that employ additional processing steps proven to increase performance [30].

Tab. 2 exemplifies the types of the features used for each test, as well as the post-
processing algorithms, employed in each individual case, while Fig. 2 plots the results we
achieved for different configurations.

If we only use our NAMC features with 4 channels (one for each color plane plus one
computed between color planes) we outperform Viola and Jones’s [38] Haar-like features
(V]), Dalal and Triggs’s [10] HOGs, Felzenszwalb’s et al. [18] DPMs (trained on PASCAL),
Dollér’s et al. [11] channels (FtrMine), while our best performance is obtained for NAMC—+
that improves LDCF [30] with ~ 1.8%. Fig. 3 shows the state-of-the art solutions on INRIA,
but also includes others, in order to fill a wide range of feature types used so far.
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Figure 2: Experiments on INRIA Pedestrian Dataset. The normalized autobinomial
Markov channels on LUV performs much better than for other color spaces, while by decor-
relating our features we have got improvements up to ~ 18%. It is better to use many nor-
malized autobinomial Markov channels on Y, but if we extract fewer from different color
spaces we get close results. An inexpensive configuration of the normalized autobinomial
Markov channels used with gradient based features or/and a post-processing local decorre-
lation brings improvements up to ~ 2.6% against ACF (Aggregated Channel Features) [15]
and ~ 1.8% against LDCF (Locally Decorrelated Channel Features) [30].
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Figure 3: Results on INRIA Pedestrian Dataset. The log-average MRs (miss rates) have
been computed considering a reasonable FP, lower than 10~! FPPI (false positives per im-
age). Our NAMC+ ranks in top three, preceded by Franken [28] and SpatialPooling [33],
while our NAMC outperforms most of the solutions that have laid the foundations of pedes-
trian detection.
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Figure 4: Results on CALTECH Pedestrian Dataset. The test includes all marked pedes-

trians, with a height of the bounding box of at least 16 pixels and less than 80% occlusion.
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In order to ensure our results cover a large range of real case scenarios, we have employed
the Caltech Pedestrian Dataset [13], currently ranked as the largest and most complete dataset
in the field of pedestrian detection. The obtained results shown in Fig. 4 demonstrate the
efficiency of our approach against the tested state-of-the art solutions.

The main advantage of using the normalized autobinomial Markov channels as feature
descriptor comes from the property of randomly selecting pixels to be part of the neighbour-
hood system, having a significant contribution for pedestrian detection in noisy scenarios.
Another benefit is given by the fact that it shows several possibilities of optimizations by
turning many of the computations into memory accesses, as briefly shown in Sec. 2.1.

5 Conclusions

Our work has been motivated by the inherent characteristic of natural images, namely the fact
that adjacent pixel values are correlated. This characteristic allowed us to use probabilistic
methods that, by their nature, are suitable for such problems. More precisely, we proposed
the use of Markov random fields for pedestrian detection.

We have shown that combining the normalized autobinomial Markov channels together
with gradient-based features in a cascade of boosted trees and using a method that substitutes
the need for oblique splits, we outperform the majority of the existing features and methods
for pedestrian detection.

Further work will consist in an extensive evaluation of robustness and functional limita-
tions of the proposed methodology, as well as assessing the computational costs against the
actual state of the art solutions.
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