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Pedestrian detection represents one of the most important components of
engineering devices that use automated vision to help decision systems
take quick and accurate actions. Such systems are defined and customized
to be useful for different needs, such as monitoring and aided surveillance,
or increasing safety features in automotive industry. Given the large spec-
trum of applications that use pedestrian detection, demand has increased
in recent years for the development of feasible solutions which can be
integrated in devices such as smartphones or action cameras.

This paper focuses on finding probabilistic features that highlight the
human body characteristics regardless of contextual information in im-
ages. Adjacent pixels are often spatially correlated, which means that
they are likely to have similar values. We view the image as a collection
of random variables indexed by certain locations, called sites. The state of
a site ξ is conditionally independent of all variables in the random field,
except the neighbouring system Nξ =

{
η ∈Ω | η 6= ξ , d2(ξ ,η)≤ ∆

}
,

where ∆ is a positive integer and d2(ξ ,η) is the squared Euclidean dis-
tance between ξ and η . The neighbouring system strictly depends on a
collection of cliques C = ∑

ω(δ )
k=1 Ck, where ω(∆) is the number of cliques

for each local specification.
Energy function: An unpublished manuscript [2] describes how to

interpret the local property of a Markov random field in terms of energy
and potential, claiming that the probability at a site ξ is given by:

π
ξ (γ) =

e−∑C3ξ VC(γ)

∑ϕ∈F e−∑C3ξ VC(ϕ,γΩ\ξ )
, (1)

where VC is the potential function, and ϕ ∈F . To get the probability that
at a site ξ the state is γ , we need to define a potential function VC(γ) in the
neighbouring system, here denoted by a collection of cliques C. To be able
to do this, we refer to the auto-binomial model that was introduced by Be-
sag [1] to describe types of spatial processes, examining some stochastic
models that occur in the texture of various physical materials.

Potential function: The potential at a certain state is given by:

VC(γ) =


−ln

(
Γ

γξ

)
+ γξ if C = {ξ}

γξ · γη

ν
if C = {ξ ,η}

0 otherwise,

(2)

where ν is a normalization constant. If we replace Eq. 2 in Eq. 1, we get
the probability assigned to a local system, and namely Eq. 3.

Feature calculation: The normalized autobinomial Markov channels
are given by the probability that at a site ξ the state is γ:

π
ξ (γ) = Z−1

(
Γ

γξ

)
σ

γξ (1−σ)Γ−γξ , (3)

where Z =

(
Γ

Γ/2

)
is a normalization constant for the binomial distri-

Figure 2.a: Results on INRIA Pedestrian Dataset.

Figure 1: a) Feature representation. Several channels (NAMC-
normalized autobinomial Markov channels, GM-gradient magnitude and
GHs-gradient histograms) have been computed using different transfor-
mations of the input image. b) Local decorrelation. Multiple decorrela-
tion filters have been learned separately for each channel. c) Cascade of
boosted trees. The classification is based on a cascade of boosted trees,
where each node examines a feature value in a certain channel and each
leaf returns a score.

bution, and σ =σ(Nξ )= (e〈α,β 〉)/(1+e〈α,β 〉). The scalar product 〈α,β 〉
of the two vectors of size ω(δ ) sums up and weighs (with α) the abso-
lute difference of gray levels βk = βk(γNξ

) = |γη − γη ′ |. The only sites
participating are pairs of cliques found in the same neighbourhood of the
analyzed pixel. In other words η 6= η ′, and η ,η ′ ∈Nξ , where {η ,ξ} and
{η ′,ξ} represent two pairs in Ck containing ξ .

The main advantage of using the normalized autobinomial Markov
channels as feature descriptor comes from the property of randomly se-
lecting pixels to be part of the neighbourhood system, having a significant
contribution for pedestrian detection in noisy scenarios. Another benefit
is given by the fact that it shows several possibilities of optimizations by
turning many of the computations into memory accesses.

This paper introduces the normalized autobinomial Markov channels
and proves that the general idea of feature scaling is applicable. More-
over, it uses a method of feature decorrelation [3] to substitute the need
for oblique splits, and shows that such a cascade of boosted trees [4] out-
performs the majority of the existing features and methods for pedestrian
detection. The results shown in Fig. 2.a and Fig. 2.b demonstrate the effi-
ciency of our approach against the tested state-of-the art solutions.

[1] J. Besag. Spatial interaction and the statistical analysis of lattice sys-
tems. Journal of the Royal Statistical Society, 1974.

[2] J. M. Hammersley and P. Clifford. Markov field on finite graphs and
lattices. Unpublished, 1971.

[3] W. Nam, P. Dollar, and J.H. Han. Local decorrelation for improved
pedestrian detection. NIPS, 2014.

[4] Z. Tu. Probabilistic boosting-tree: Learning discriminative models
for classification, recognition, and clustering. ICCV, 2005.

Figure 2.b: Results on CALTECH Pedestrian Dataset.


