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Abstract

The potential value of hashing techniques has led to it becoming one of the most
active research areas in computer vision and multimedia. However, most existing hash-
ing methods for image search and retrieval are based on global representations, e.g.,
GIST, which lack the analysis of the intrinsic geometric property of local features and
heavily limit the effectiveness of the hash code. In this paper, we propose a novel su-
pervised hashing method called Local Feature Binary Coding (LFBC) for projecting lo-
cal feature descriptors from a high-dimensional feature space to a lower-dimensional
Hamming space via compact bilinear projections rather than a single large projection
matrix. LFBC takes the matrix expression of local features as input and preserves the
feature-to-feature and image-to-class structures simultaneously. Experimental results on
challenging datasets including Caltech-256, SUN397 and NUS-WIDE demonstrate the
superiority of LFBC compared with state-of-the-art hashing methods.

1 Introduction
Learning to hash [4, 14, 15, 16, 17, 20, 25, 27, 28] has received substantial attention due
to its potential in various applications such as data mining, pattern recognition and informa-
tion retrieval. In these topics, we usually need to utilize hashing methods to embed high-
dimensional data points into a similarity-preserved Hamming space with low-dimensional
compact binary string, which can lead large efficiency gains of the memory storage require-
ments and simultaneously increase the retrieval speed. Roughly, current hashing techniques
can be divided into two groups, the unsupervised methods and the supervised methods.

A most well-known unsupervised method is Locality-Sensitive Hashing (LSH) [4] which
can preserve similarity information and map data points close in a Euclidean space to similar
codes. Beyond that, principled linear projections like PCA Hashing (PCAH) [25] has been
developed for better quantization. Spectral Hashing (SpH) [28] was proposed to preserve
the data locality relationship [26] to keep neighbors in the input space as neighbors in the
Hamming space. Besides, Anchor Graphs Hashing (AGH) [17] and Compressed Hashing
(CH) [15] have also been effectively applied for large-scale data retrieval tasks as well. Al-
l these hashing techniques mentioned above are regarded as unsupervised methods which
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Figure 1: The illustration of the working flow of LFBC learning. The algorithm intends to
preserve the pairwise F2F structure and the I2C distances and outputs the optimal bilinear
projection matrices Θ1 and Θ2.

may lead to worse retrieval precision for the datasets with noise. To achieve better results,
researchers have developed supervised hashing methods which could attain higher search
accuracy, since the label information is involved in the learning phase. A simple super-
vised hashing method is Linear Discriminant Analysis Hashing (LDAH) [22] which can
tackle supervision via easy optimization but still lacks adequate performance due to the use
of orthogonal projection in hash functions. Beyond that, some more complicated methods
have been proposed such as: Binary Reconstructive Embeddings (BRE) [14], Minimal Loss
Hashing (MLH) [20] and Kernel Supervised Hashing (KSH) [18].

However, both conventional unsupervised and supervised hashing algorithms mentioned
above are primarily designed for global representations, e.g., GIST [21]. For realistic visual
retrieval tasks, however, these global hashing techniques cannot cope with different compli-
cations appearing in the images such as cluttering, scaling, occlusion and change of lighting
conditions. To overcome this problem, local features such as SIFT [19] are usually adopted
to represent images, which have proved to be more robust in challenging and noisy scenar-
ios. Inspired by advantages of local representations, in this work, we intend to develop a
local feature based hashing method for improving the retrieval results. If keypoints are well
detected, local hash codes are able to avoid the limitations such as background variations,
occlusions, and shifts in global representations.

In this paper, we propose an supervised hashing framework, i.e., Local Feature Bina-
ry Coding (LFBC), for visual similarity search, in which the feature-to-feature (F2F) and
image-to-class (I2C) structures are successfully preserved and combined together. Specif-
ically, the F2F structure considers the pairwise relationship between local features in the
original feature space. While, from a higher-level aspect, I2C structure reflects the con-
nection between images and their corresponding classes, which is derived from [2]. Besides,
considering that our method is specifically designed for local feature based hashing, the orig-
inal Hamming Ranking and Hamming Table cannot be directly applied on local features for
visual indexing. Thus, in this paper, we also introduce an image indexing/searching scheme
called Local Hashing Voting (LHV), which has been demonstrated to be efficient and accu-
rate for image similarity search in our experiments. The outline of the proposed method is
illustrated in Fig. 1.It is worthwhile to highlight several properties of the proposed method:
(1) Different with global representation based hashing, LFBC directly learns hashing func-
tion from local features and simultaneously preserves pairwise F2F and I2C structure, which
is proved to be more effective for accurate retrieval. (2) Since bilinear projection hashing
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function is adopted in our method, the complexity of the eigen-decomposition, which is the
cubic form of the dimensionality, will be significantly reduced.

2 Related Work
In the literature, there are only a few works related to local feature based embedding and
retrieval. A main work involving local feature coding was proposed in [10]. In particular,
two schemes are introduced to improve the standard Bag-of-Words (BoW) model: (1) a
Hamming embedding (HE) which provides binary signatures to refine visual words; (2) a
weak geometric consistency constraint with the geometrical transformation. Both methods
can significantly improve the final performance for retrieval tasks. Furthermore, a coupled
Multi-Index (c-MI) framework was proposed for accurate image retrieval [32]. Beyond that,
a selective match kernel approach [23] has also been developed to incorporate matching
kernels sharing the best properties of HE and VLAD. Another related work based on [10] can
be seen in [29], which introduces a color binary descriptor being calculated in either a global
or a local form. However, all the above methods mainly focus on the retrieval techniques
rather than the learning procedure of the binary coding for large-scale hashing. Besides,
these methods are not fully linear, which limits their efficiency and applicability for large-
scale datasets. To further improve these problems, in this paper, a bilinear projection based
hashing method LFBC has been proposed on local features for improved image retrieval.

3 Local Feature Binary Coding
We are given N local features x1, · · · ,xN ∈ RD from n images. For image i, we use Xi =
{xi1, · · · ,ximi} to represent its local feature set. Inspired by [6, 31], in our method, we aim to
learn bilinear projections to effectively encode these local features, which can effectively re-
duce the complexity in optimization for large-scale tasks. Meanwhile, the learned projection
matrices are much smaller and the projection speed is much faster compared with the con-
ventional single projection. In particular, the bilinear projection matrices are multiplied on
both sides of data. It can explore the matrix structure of features to enhance the effectiveness
of projection. Firstly, we factor integer D as D = D1×D2. Then we reorganize vector xi into
matrix Xi ∈ RD1×D2 such that vec(Xi) = xi, where vec(·) represents the vectorization of a
matrix. And we also have the inverse map of vectorization vec−1(xi) = Xi, since the vector-
ization is a one-to-one correspondence if D1 and D2 are given. To make the transformation
more efficient, in this matrix form of local features, we define our hash function using two
matrices Θ1 ∈ RD1×d1 and Θ2 ∈ RD2×d2 :

H(Xi) = sgn
(
vec(ΘT

1 XiΘ2)
)
∈ {−1,+1}d1d2 . (1)

It is noticeable that during the code learning stage, we use {−1,+1} to encode local features
and employ centralized data xi− 1

N ∑
N
j=1 x j instead of xi, ∀i.

In fact, we notice that vec(ΘT
1 XiΘ2) = (ΘT

2 ⊗ΘT
1 )vec(Xi) = (ΘT

2 ⊗ΘT
1 )xi, where ⊗ is

the Kronecker product, thus a bilinear projection is simply a special case of the single matrix
projection Θ which can be decomposed as Θ = Θ2⊗Θ1. Besides, it is easy to show that if
Θ1 and Θ2 are orthogonal, i.e., ΘT

1 Θ1 = Id1×d1 and ΘT
2 Θ2 = Id2×d2 , then Θ is orthogonal, as

well. The bilinear projection leads to a more efficient eigen-decomposition on matrices with
much smaller sizes D1×D1 and D2×D2 rather than D1D2×D1D2 for single projection.
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Additionally, the space complexity for bilinear projections is O(D2
1 +D2

2), while the single
one needs O((D1×D2)

2). Besides, since most of the local features are represented as con-
catenated histogram vectors, they can be intrinsically decomposed by two data structures.
For instance, 128-dim SIFT is computed on 4×4 grids and for each grid a 8-bin histogram
is calculated. In this way, a 128-dim SIFT is formed by concatenating 16×8-bin histogram-
s. Thus, for SIFT feature, we can naturally decomposed it via 16× 8 in our bilinear codes
learning.

Feature-to-feature (F2F) preserving: To obtain meaningful hash codes for local fea-
tures, we first consider the geometric structure of the entire local feature setF = {X1, · · · ,XN}.
We are concerned about the individual relationship between local features in the original s-
pace, which should also be retained in the lower-dimensional space. Specifically, for similar
(dissimilar) pairs, their distance is expected to be minimized (maximized) in the Hamming
space. Since the class labels are unavailable for unsupervised method, we first use k-nearest
neighbors (KNN) on F to obtain some weak label information. Then the pairwise label of
(Xi,X j) is defined as: `i j =+1, if Xi and X j are nearest neighbors; otherwise, `i j =−1.

Since different pairs have different importance in the embedding, for pair (Xi,X j), we
assign a weight which is related to the pairwise distance with parameter σ :

W F
i j = exp

(
−
`i j +1
2σ2 ‖Xi−X j‖2 +

`i j−1
2σ2‖Xi−X j‖2

)
,

where ‖ ·‖ is Frobenius norm. We can find that W F
i j ∈ (0,1) and for a positive pairwise label,

W F
i j is decreasing as the distance ‖Xi−X j‖ increases and vice versa. In other words, the

positive pair is more important when they are close to each other, and the negative pair is
more important when they are far away from each other. We denote P = {(i, j)|Xi,X j ∈ F}.
Therefore, preserving the F2F structure is to maximize

∑
(i, j)∈P

W F
i j `i j〈H(Xi),H(X j)〉. (2)

The above function reaches its maximum value when W F
i j `i jH(Xi) and H(X j) are similarly

sorted due to the rearrangement inequality [8].
Image-to-class (I2C) preserving: We are also concerned about a higher level connec-

tion, i.e., relationship between images and classes. Thus we consider a complete bipartite
graph (a.k.a. bigraph) G = (V1,V2,E) in which V1 is the set of all images and V2 is the set
of all classes. The image-to-class (I2C) distance provides a feasible way to quantize the
edges of E. Given the set of local features of an image Xi = {Xi1, · · · ,Ximi}, which contains
all of local features of image i, the I2C distance between image i and class c is defined as:
Dc

Xi
= ∑X∈Xi ‖X −NNc(X)‖2, where NNc(X) is the nearest neighbor of the local feature X

in class c.
However, searching the nearest neighbor in such a large scale space of local features of

each class will still cost much time. Here, to reduce the complexity of searching, we employ
K-means clustering algorithm on the set of local features of each class, i.e.,

⋃
C(Xi)=cXi,

c = 1, · · · ,C, where C is the number of classes and C(·) ∈ {1, · · · ,C} is the label informa-
tion function that represents the class label of the input. And then we reduce the searching
range of nearest neighbor to the cluster centers, i.e., for c = 1, · · · ,C, we let NNc(X) ∈
Centroids {S1, · · · ,SK} of

⋃
C(Xi)=cXi. Via I2C distances, we construct the bigraph G =

(V1,V2,E), where V1 and V2 represent the set of all the images and the set of all the classes,
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respectively. Then for each edge in E, we define its weight W I2C
ic , named the I2C similarity

between image i and class c in the original space, by the following Gaussian function

W I2C
ic = exp(−(Dc

Xi
)2/2σ

2), i = 1, · · · ,n, c = 1, · · · ,C, (3)

where σ is the Gaussian smooth parameter and n is the number of training samples. Af-
ter applying LFBC, we have the I2C distance in Hamming space: D̂c

Xi
= ∑X∈Xi ‖H(X)−

NNc(H(X))‖2. In order to preserve the order of projected similarity in the projected space,
a reasonable objective function for bigraph regularization is to minimize

n

∑
i=1

C

∑
c=1

D̂c
Xi
·W I2C

ic . (4)

One of the necessary conditions of the above function reaches the minimum value is that
{D̂c

Xi
} is order-preserved due to the rearrangement inequality [8].

In addition, to make the projected space more compact, we set orthogonality constraints
on the projection matrices Θ1 and Θ2, i.e., ΘT

1 Θ1 = I and ΘT
2 Θ2 = I. Combined the F2F

preserving part and the I2C preserving part with the orthogonality constraints, finally, we set
our optimization problem as:

argmax
ΘT

1 Θ1=I, ΘT
2 Θ2=I

∑
(i, j)∈P

W F
i j `i j〈sgn(X̂i),sgn(X̂ j)〉− γ

n

∑
i=1

C

∑
c=1

D̂c
Xi
·W I2C

ic . (5)

where γ is the regularization parameter.
Alternate Optimization via Relaxation: In this section, Motivated by [18, 28], to gain

a solution of Eq. (5), we first relax the discrete sign function in optimization problem (5) to a
real-valued continuous function by using its signed magnitude, i.e., sgn(x)≈ x. In this case
the F2F preserving part, becomes ∑(i, j)∈P W F

i j `i j Tr(ΘT
1 XiΘ2ΘT

2 XT
j Θ1). For simplicity, we

denote NNc(X) = Xc. Besides, we also make a statistical approximation on the computation
of projected I2C distances due to the large amount of local features. That is, we exchange the
operation of NNc and H(·) for all X ∈ Xi, i.e., ∑X∈Xi ‖H(X)−H(X)c‖2 ≈ ∑X∈Xi ‖H(X)−
H(Xc)‖2. Thus, the projected I2C distance after applying matrices Θ1 and Θ2 becomes

D̂c
Xi
≈ ∑

X∈Xi

‖ΘT
1 XΘ2−Θ

T
1 Xc

Θ2‖2 = ∑
X∈Xi

‖ΘT
1 (X−Xc)Θ2‖2

=
mi

∑
k=1

Tr(ΘT
1 (Xik−Xc

ik)Θ2Θ
T
2 (Xik−Xc

ik)
T

Θ1)

:=
mi

∑
k=1

Tr(ΘT
1 ∆Xc

ikΘ2Θ
T
2 (∆Xc

ik)
T

Θ1),

(6)

where ∆Xc
ik = Xik−Xc

ik, k = 1, · · · ,mi.
Regarding the optimization scheme, two variables (Θ1 and Θ2) are defined in our objec-

tive function. For each single variable, the objective function is convex and analytic. Howev-
er, for both variables, the objective function becomes a nonconvex optimization problem. To
the best of our knowledge, there is no direct way to output the projections Θ1 and Θ2 simul-
taneously. Thus, we derive an alternate iteration algorithm [1] in this section. Specifically,
for a fixed Θ2, we can compute the optimal Θ1 by solving a classical eigen-decomposition
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problem. And for the computation of Θ2, we can then update Θ2 by solving another eigen-
decomposition problem with the computed Θ1. First, let us denote the objective function in
optimization problem (5) by L(Θ1,Θ2) and transform it to the following form by Eq. (6):

L(Θ1,Θ2) = ∑
(i, j)∈P

W F
i j `i j Tr(ΘT

1 XiΘ2Θ
T
2 XT

j Θ1) (7)

−γ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W I2C
ic Tr(ΘT

1 ∆Xc
ikΘ2Θ

T
2 (∆Xc

ik)
T

Θ1),

and

L(Θ1,Θ2) = ∑
(i, j)∈P

W F
i j `i j Tr(ΘT

2 XT
j Θ1Θ

T
1 XiΘ2) (8)

−γ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W I2C
ic Tr(ΘT

2 (∆Xc
ik)

T
Θ1Θ

T
1 ∆Xc

ikΘ2),

since Tr(AB) = Tr(BA) if both products AB and BA exist. Then we denote

M2(Θ2) = ∑
(i, j)∈P

W F
i j `i jXiΘ2Θ

T
2 XT

j − γ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W I2C
ic ∆Xc

ikΘ2Θ
T
2 (∆Xc

ik)
T , (9)

and

M1(Θ1) = ∑
(i, j)∈P

W F
i j `i jXT

j Θ1Θ
T
1 Xi− γ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W I2C
ic (∆Xc

ik)
T

Θ1Θ
T
1 ∆Xc

ik, (10)

which are two matrix-valued functions with their codomains RD1×D1 and RD2×D2 . In this
way, we can rewrite function L as: L(Θ1,Θ2) = Tr(ΘT

1 M2(Θ2)Θ1) = Tr(ΘT
2 M1(Θ1)Θ2).

Although the number of the local features is relatively huge, the size of our final matrices
M1 and M2 used for decomposition are small enough (D1 and D2 are always less than 100).
This property mainly guarantees the efficiency and feasibility. Therefore, for t = 0, we
randomly initialize Θ

(t)
2 ; for the t-th step, we have the update rules:

Θ
(t)
1 ← the first d1 eigenvectors of M2(Θ

(t−1)
2 );

Θ
(t)
2 ← the first d2 eigenvectors of M1(Θ

(t)
1 ).

For any t, we have the inequality L(Θ(t−1)
1 ,Θ

(t−1)
2 ) ≤ L(Θ(t)

1 ,Θ
(t−1)
2 ) ≤ L(Θ(t)

1 ,Θ
(t)
2 ).

ThusL(Θ(t)
1 ,Θ

(t)
2 ) is monotonic nondecreasing as t→∞. And continuous functionL(Θ1,Θ2)

is bounded in the closed district {(Θ1,Θ2)|ΘT
1 Θ1 = I,ΘT

2 Θ2 = I}. Then the above alternate
iteration converges. In practice, we stop the iteration when |L(Θ(t)

1 ,Θ
(t)
2 )−L(Θ(t−1)

1 ,Θ
(t−1)
2 )|

is less than a very small threshold (Note: LFBC can always coverage within 10 iterations).

4 Indexing via Local Hashing Voting
Once the bilinear projection matrices {Θ1,Θ2} are obtained, we can easily embed the train-
ing data into binary hash codes by Eq. (1). Particularly, for a query local feature x̂, its hash
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Figure 2: The illustration for the proposed LHV scheme. Given a query image, its local
features are first extracted and embedded into hash codes via LFBC. Then, each hash code
(e.g., “1 1 -1 -1 1 -1 1 -1 -1 1”) corresponding to a local feature in the query image is then
searched in the Hamming lookup table within the Hamming radius r and the corresponding
images’ indices are obtained. Finally, we vote and accumulate the times of each image’s
indices appearing in relevant buckets and rank them to return the retrieved results.

code is obtained by H(X̂) = sgn(vec(ΘT
1 (X̂−

1
N ∑ j=1 X j)Θ2)), where X̂ is the matrix form of

x̂. However, for our local feature hashing scenario, traditional linear search (e.g., Hamming
distance ranking) with complexity O(N) is not fast any more, since N denotes the total num-
ber (at least 3M local features for a large-scale database) of local features. To accomplish
the local feature based visual retrieval, in this paper, we introduce a fast indexing scheme via
Local Hashing Voting (LHV) as shown in Fig. 2. We first construct the Hamming lookup ta-
ble (a.k.a. the hashing table) into our LHV scheme which build a series of bucket containing
the indices of the documents with the same hash code. Given a query, we can find the bucket
of corresponding hash codes in near constant time O(1), and return all the data in the bucket
as the retrieval results.

After construction of the Hamming lookup table over the training set, we store the cor-
responding indices for the hash codes of all local features. For instance, given a bucket with
hash code [1,1,−1,−1,1,−1,1,−1,−1,1], we store the indices of the images, which con-
tain the same local feature hash code with this bucket. In this way, we search the hash code
H(vec−1(qi)) for each local feature qk ∈ Q in the query image Q = {q1, · · · ,qm} over the
Hamming lookup table within Hamming radius r and return the possible images’ indices. It
is noteworthy that the same bucket in the Hamming lookup table may store the indices from
different images. Finally, we vote and accumulate the times of each image’s indices appear-
ing in relevant buckets and then rank them in decreasing order. The final retrieved samples
are returned according to the relevant ranking generated by LHV.

5 Experiments and Results
In this section, the proposed LFBC algorithm is evaluated for the image similarity search
problem. Three different datasets are used in our experiments, i.e., Caltech-256 [7], SUN397
[30] and NUS-WIDE [3]. The Caltech-256 dataset consists of 30607 images associated with
256 object categories. By following the experimental setting in [13], we randomly select
1000 images as the query set and the rest of dataset is regarded as the training set. The
SUN397 dataset contains 108,754 scene images in total from 397 well-sampled categories
with at least 100 images per category. We randomly select 70 samples from each category
to construct the training set and the rest of samples are the query set. Thus, there are total
numbers of 27790 and 80964 in the training set and query set, respectively. The NUS-WIDE
dataset consists of around 270,000 web images associated with 81 ground truth concept
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(a) Caltech-256 (b) SUN397 (c) NUS-WIDE
Figure 3: Performance comparison with different numbers of bits.
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Figure 4: Performance comparison (MAP) of our LFBC and other global hashing schemes.
Note: KSH and BRE are the top-performing supervised hashing methods.

classes. As in [17], we only use the most frequent 21 concept classes with a total number
of 234,182 images and each of the used classes has abundant images ranging from 5,000
to 30,000. Unlike other datasets, each image in the NUS-WIDE dataset is assigned with
multiple semantic labels (tags). In our work, two images belong to the same class, only if
they share at least one common tag. We further sample uniformly 100 images from each of
the selected 21 tags to form a query set of 2,100 images with the rest serving as the training
set. Furthermore, given an image, we would like to describe it with a set of local features
extracted from it. In our experiments, we adopt 128-D SIFT1 [19] as the local feature to
describe the images and then learn to hash these local descriptors with all compared methods.
Moreover, the labels assigned to the local features are consistent with the label of the image
they come from. It is noteworthy that the training set of each dataset is used for not only
training but also as a gallery database for similarity search in the querying phase.

In the querying phase, a returned point is regarded as a true neighbor if it lies in the
top ranked 200, 200 and 500 points in LHV for Caltech-256, SUN397 and NUS-WIDE,
respectively. Specifically in LHV, we just consider the local hash codes lying in the buckets
that fall within a small Hamming radius r = 2 (following [18, 28]) in the Hamming lookup
table which is constructed using the training set codes. We evaluate the retrieval results by
the Mean Average Precision (MAP) and the precision-recall curve by changing the number
of top ranked points in LHV. Our experiments are completed using Matlab 2013a on a server
configured with a 12-core processor and 128G of RAM running the Linux OS.

Compared Methods and Settings: In our experiments, we compare the proposed method
against nine general hashing algorithms, including five supervised methods: LDAH [22],
BRE [14], MLH [20], KSH [18] and BinBoost descriptor [24], and six unsupervised meth-
ods: LSH [4], PCAH [25], SpH [28],Spherical hashing (SpherH) [9], Iterative quantization

1Assuredly our approach can also work with any other legitimate local features.
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Figure 5: The comparison of precision-recall curves of the supervised algorithms on the
three datasets with the code length of 96 bits.

(ITQ) [5] and AGH [17]. Besides, Hamming embedding (HE) [10], which is a nonlinear lo-
cal feature based hashing method, is also included in our comparison. All the above methods
(except BinBoost) are computed on the extracted SIFT local features to show their capabili-
ty. It is noteworthy that we treat BinBoost as a binary feature learning method which learns
to hash from the original local patches2, however, the other methods construct the binary
codes from extracted SIFT descriptors. We used the publicly available codes of BRE, MLH,
LDAH, SpH, SpherH, ITQ and AGH, and implemented LSH, PCAH, KSH and BinBoost
ourselves. All of the above methods are then evaluated on six different lengths of codes (16,
32, 48, 64, 80, 96). Under the same experimental setting, all the parameters used in the
compared methods have been strictly chosen according to their original papers.

For our LFBC, we set k = 15 for pairwise data construction via KNN in F2F structure
preserving. In this way, we assign the pairwise label `i j =+1 if they are 15 nearest neighbors
of each other in Euclidean space, for others, we assign the pairwise label `i j =−1. Besides,
we set D1 = 16 and D2 = 8 for the transformation of SIFT local features due to the natural
composition of the 128dim-SIFT features (can also be seen in Table 1). We further adopt
K = 300 in the K-means clustering for I2C structure preserving. For LFBC, the optimal
regularization parameter γ for each dataset is selected from one of {0.05,0.1, · · · ,0.5} with
step of 0.05, which yields the best performance by 10-fold cross-validation on training data.

Results Comparison: Fig. 3 shows the MAP curves of all compared algorithms on
Caltech-256, SUN397 and NUS-WIDE datasets. All MAP values are calculated using the
proposed LHV ranking algorithm under the same setting, since compared methods are direct-
ly used on local features. In general, the searching accuracies on the NUS-WIDE dataset are
obviously higher than that on the other two datasets with more categories. Specifically, the
supervised methods, KSH, BRE, MLH and BinBoost, always achieve the better performance
than most of unsupervised methods, since the label information is involved in the learning
phases. HE, as the only hashing method which is specifically designed for local features,
can lead to competitive results compared with BRE in both Caltech-256 and SUN397 even
though it is unsupervised. BinBoost has the best performance compared with all other exist-
ing methods and AGH achieves the best performance among all of the unsupervised methods.
Furthermore, the results of KSH always climb up then go down when the length of code in-
creases. The same tendency also appears with BRE, LDAH and PCAH. LSH consistently
brings the worst actuaries on all these datasets. In general, our LFBC algorithm consistently
outperforms all the compared methods in every length of code. This is because we consid-
er the geometry structure of local features (F2F) and the global relationship from images

2Each patch is with the size of 4×4 located on the keypoints detected by SIFT.
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Table 1: Result comparison (32 bits) via LFBC from different decompositions of SIFT fea-
tures

Decomposition methods Caltech-256 SUN397 NUS-WIDE
1×128 0.229 0.101 0.525
2×64 0.239 0.104 0.538
4×32 0.241 0.118 0.541
8×16 0.253 0.129 0.551

Table 2: Result comparison (32 bits) with/without F2F and I2C term in Eq. (5).
Methods Caltech-256 SUN397 NUS-WIDE

Only F2F preserving 0.189 0.065 0.387
Only I2C preserving 0.227 0.104 0.432

F2F+I2C preserving (LFBC) 0.253 0.129 0.551

to class (I2C) simultaneously. Besides, in Table 1 we also illustrate the results computed
via LFBC under different local feature decomposition. Since SIFT feature is intrinsically
composed via 16 grid with 8-bin histograms, the best naturally bilinear decomposition i.e.,
8× 16 = 128dim, can achieve the better results than other decomposition ways. Table 2
shows the effectiveness of F2F and I2C term in 32 bits LFBC. It is observed only preserving
F2F or I2C individually cannot achieve the best performance.

Besides, to make the comparison more convincing, we also compare with hashing on
global representations. For all three datasets, we first use the K-means clustering to con-
struct the codebooks with sizes of 500 and 1000 respectively and then encode SIFT features
into global representations via vector of locally aggregated descriptors (VLAD) [11], which
proves to be more discriminative than the original Bag-of-Words (BoW) representation. Af-
ter that, two best performed hashing methods3, i.e., KSH and BRE, are used to learn the hash
codes on these global representations. Additionally, we also list the search performance via
directly using the global feature GIST with KSH and BRE. In Fig. 4, one can see our local
hashing method LFBC with LHV achieves better results than the compared global hashing
schemes. Moreover, the precision-recall curves of all the compared methods on three dataset-
s with the code length of 96 bits are presented in Fig. 5 as well. From all these figures, we
can further discover that LFBC achieves better performance than other methods for both the
Mean Average Precision (MAP) and Area Under the Curve (AUC) on all three datasets.

6 Conclusion
In this paper, we have presented a novel supervised framework, called Local Feature Binary
Coding (LFBC), to learn highly discriminative binary codes on local descriptors for large-
scale image similarity search. LFBC aims to seek orthogonal projection matrices for hash-
ing, which can successfully preserve the pairwise similarity between different local features
and simultaneously take image-to-class distances into consideration. We have systemati-
cally evaluated our methods on Caltech-256, SUN397, and NUS-WIDE datasets and show
promising results compared with state-of-the-art hashing methods. In future work, it would
be interesting to utilize our method on large-scale video dataset [12] for action retrieval tasks.

3BinBoost is not considered here, since it cannot be directly applied on extracted features.
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