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Abstract

Relative attributes help in comparing two images based on their visual properties.
These are of great interest as they have been shown to be useful in several vision related
problems such as recognition, retrieval, and understanding image collections in general.
In the recent past, quite a few techniques have been proposed for the relative attribute
learning task that give reasonable performance. However, these have focused either on
the algorithmic aspect or the representational aspect. In this work, we revisit these ap-
proaches and integrate their broader ideas to develop simple baselines. These not only
take care of the algorithmic aspects, but also take a step towards analyzing a simple yet
domain independent patch-based representation for this task. This representation can
capture local shape in an image, as well as spatially rigid correspondences across regions
in an image pair. The baselines are extensively evaluated on three challenging relative
attribute datasets (OSR, LFW-10 and UT-Zap50K). Experiments demonstrate that they
achieve promising results on the OSR and LFW-10 datasets, and perform better than the
current state-of-the-art on the UT-Zap50K dataset. Moreover, they also provide some
interesting insights about the problem, that could be helpful in developing the future
techniques in this domain.

1 Introduction

The goal of relative attribute learning is to learn attribute-specific models such that given a
pair of images, we can predict which image exhibits a particular attribute more [20]. Rela-
tive attributes have been successfully employed in a variety of problems such as interactive
image search [13, 14], scene classification [25], active learning [1, 21], etc., thus making the
problem of learning accurate relative attribute models of immense practical interest.
Relative attribute learning is challenging primarily for two reasons: (a) First, in relative
attributes, each data-point denotes a pair of images with an associated ordering information.
For a given image-pair, this ordering indicates the relative strength of a particular attribute
(more/less/similar). As visual differences within image pairs become more and more subtle,
there may arise intransitive orderings (e.g., there may exist pairs with orderings A > B, B >~ C
and C > A). This is because of human-inconsistencies in ground-truth annotation [2]. Due
to this, learning a single (global) model for all the pairs may not be sufficient [27]. (b) The
second difficulty arises due to weak-labeling; i.e., lack of correspondence between attribute
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Figure 1: Two primary challenges in the visual comparison task are (a) fine-grained within-
pair differences (left) that make a global model insufficient, and (b) weak-labeling (right) as
training data has no information about which region(s) correspond to a particular attribute.

label and image regions in the training data. Since the attribute-specific ordering is assigned
to an image-pair as a whole, it remains unknown which regions in the images correspond
to that attribute. This makes it difficult to address the correspondence problem under a
discriminative framework. Figure 1 illustrates these two challenges.

To our best knowledge, four approaches are proposed that particularly focus on “relative
attribute learning” problem: (a) Parikh and Grauman [20], who were the first to introduce the
idea of relative attributes, use a single attribute-specific ranking model learned using global
features (e.g., GIST or colour histogram); (b) Li et al. [18] learn a hierarchy of ranking
functions, successively trained using smaller subsets of data; (¢) Yu and Grauman [27] do
local learning of ranking model for each test pair using a subset of the few most analogous
(training) pairs; and (d) Sandeep et al. [23] learn a single ranking model per attribute similar
to [20], however use a part-based representation rather than global features. Among these,
Yu and Grauman [27] target fine-grained differences and focus on the algorithmic aspect.
Whereas, Sandeep et al. [23] target weak-labeling and focus on the representational aspect.

Inspired from these works, we present a family of baseline techniques for the visual
comparison task that take into consideration both representational as well as algorithmic
aspects. These are based on adopting principles from state-of-the-art visual comparison
methods [20, 23, 27], and integrating them with a locally rigid yet discriminative patch-
based representation [4]. As we will illustrate and discuss in the later parts of the paper, this
representation turns-out to be computationally more efficient and easily adaptive for diverse
domains than the one proposed in [23], thus offering a wider applicability.

We perform extensive experiments on three challenging and diverse datasets, that include
UT-Zap50K (shoes) [27], LFW-10 (faces) [23], and OSR (outdoor scenes) [19] datasets. Re-
sults indicate that even with the simplest novelty, the proposed baselines achieve promising
results on the LFW-10 and OSR datasets, and state-of-the-art results on the (most challeng-
ing) UT-Zap50K dataset. Moreover, they also provide interesting insights about the visual
comparison task, and thus may be informative for future methods addressing this.

2 Related Work

Here we briefly review some of the works related to attributes, relative attributes, and their
applications. In a broad sense, attributes are mid-level properties that are generally com-
prehensible by humans. These may carry semantic information, and have been found to be
useful in several problems such as object recognition [15, 26], describing unseen objects [6],
recognizing unseen categories [7, 16], image search [24], etc. The focus of most of these
works was on identifying the presence or absence of some attribute. However, usually the
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Figure 2: Diversity in domains such as shoes and outdoor scenes makes it difficult to use
some off-the-shelf part-detection technique.

spectrum of an attribute’s visibility across images is very wide, and it makes more sense to
deal with its perceived strength rather than absolute presence/absence. This led to the idea
of relative attributes [20]. The fundamental concept behind relative attributes is to perform
pairwise comparison rather than absolute prediction. In the recent years, relative attributes
have been adopted in several applications. In interactive image search [12, 13, 14], a hu-
man can incrementally refine the search results based on relative attribute based feedback.
In active learning [1, 21], similar feedback is used by a teacher (human) for correcting the
learner (machine), and communicating the reasons for error. Other applications include zero-
shot learning and image description generation [20], relative human descriptions that help in
comparative biometrics (such as relative height) [22], etc.

Inspired by the success of [20], a few approaches have been proposed that focus on
improving the efficacy of the visual comparison task. Rather than learning a single rank-
ing function, a hierarchy of functions was learned in [18]. Recently, in [23], rather than
using a global GIST descriptor or colour histogram (as in [20, 27]), image representation
was formed by first detecting facial regions using [29], and then concatenating their features
analogous to [8, 17]. This was then used for learning a global ranking function [20]. Due to
(available) correspondence across parts, it was able to identify attribute-specific semantically
meaningful regions. In [27], the ideas of nearest-neighbour based local learning [9, 28] and
metric learning [5] were integrated to learn local (per test pair) ranking functions that were
similar to [20]. This particularly improved the accuracy for fine-grained attribute compar-
isons. All these approaches were experimentally shown to outperform [20]. It is important to
note that among the existing relative attribute learning approaches, [18, 20, 27] are domain-
independent. However, that of [23] requires a domain-specific pre-trained part-detection
model in order to form part-based representation, and thus was shown to work only on near-
frontal faces where this is an almost solved problem [29]. For the same reason, [23] can not
be directly applied to domains that are highly deformable by nature (e.g. outdoor scenes and
shoes as shown in Figure 2), where learning part-detection models as accurate as those for
faces is still an open problem.

3 Approach

Our approach for relative attribute learning involves three main steps: forming a patch-based
representation, identifying analogous pairs, and learning a local ranking function. Initially, a
patch-based representation is formed for all the training images. Given a test image pair, first
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Figure 3: Approach overview: Given a test pair, first its patch-based representation is com-
puted. Then using this representation, its analogous training pairs are identified. These pairs
are used to learn a (local) ranking function, which is finally used for relative attribute predic-
tion (“smiling” in the above illustration).

its images are represented using similar representation. Then, in this representation space,
its few most analogous training pairs are identified using a pairwise distance function [27].
These pairs can be thought of as the K nearest-neighbours of the test pair. Finally, a ranking
function is learned [20] using only these training pairs, and is used for comparing the two
images in the test pair. Figure 3 gives an overview of this pipeline. Below we describe each
of these steps in detail.

3.1 Forming Patch-based Representation

Rather than comparing two images as a whole using a global descriptor such as GIST or
colour histogram, a patch-based representation helps in comparing regions between two im-
ages, and thus reduces the impact of the weak-labeling issue. With this motivation, a patch-
based representation for visual comparison was proposed in the Relative Parts approach [23].
However, this approach has the following limitations: (a) It relies on a pre-trained domain-
specific model for detecting local regions, which restricts its applicability to domains for
which such models are easily available (e.g., faces [29]). For other domains such as shoes
or outdoor scenes which exhibit large variations in their images, identifying and learning
discriminative patches remains a challenge (Figure 2). (b) It represents each of the de-
tected regions using a bag-of-words histogram over SIFT descriptors with 100 visual words.
Since the number of regions detected in an image is usually large (83 for faces), the high-
dimensional concatenated representation becomes computationally restrictive, particularly
for local learning of ranking models (Section 3.2).

At this point, it is worth re-iterating that our final goal is pairwise ranking, and this is
conceptually different from the conventional object/scene categorization task. Given a test
pair, first the learned ranking function evaluates each of its two images (i.e., their descriptors)
individually, and then their scores are compared for final prediction. This means that though
data is in the form of pairs of images, data representation is still at the level of individual
image rather than image pair. With this insight, we adopt ideas for image representation that
have been successfully applied in the categorization domain [4], and discuss a representation
based on patches. In Section 4.4, we will illustrate how this representation can be used to
implicitly learn the region that are discriminative with respect to a given attribute.
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As a baseline patch-based representation, given an image, we compute HOG [4] de-
scriptors from non-overlapping square patches (details are provided in Section 4.2) and con-
catenate them. This basic representation efficiently captures local shape in an image, as
well as spatially rigid correspondences across regions in an image pair. Moreover, this is
generic (i.e., equally applicable to all the images irrespective of their domain or visual con-
tent), and involves no explicit part-learning as in [23]. In the past, this has been successfully
adopted in several visual recognition tasks (e.g., object detection [8]). The motivation be-
hind using this for the relative attribute learning task is the observation that images in several
domain-specific datasets (such as shoes and faces) are largely aligned, and spatial variations
in the regions of interest are globally minimal (Figure 4). As we will demonstrate in the
experiments, this can provide significant boost in performance compared to using traditional
representations (such as GIST and colour histogram).

3.2 Identifying Analogous Pairs

As visual differences within an image-pair become more and more subtle, a single prediction
model trained using the whole dataset may become inaccurate. This is because it captures
only the coarse details, and smoothens the fine-grained properties. The Local Learning ap-
proach [27] is motivated by this fact, and proposed to consider only the few training pairs for
each test pair that are most analogous to it. The selected analogous pairs should be such that
not only their individual images match with images in the test-pair, but their within-pair dif-
ferences should also resemble that of the test-pair, thus allowing to capture local fine-grained
differences.

Let Z = {I;} be a collection of images, with each image /; being represented by a de-
scriptor x; € RY. For every attribute A in a dataset, there is a set O 4 = {X,,} where each
X, = (I,,1,y) denotes an ordered pair of images, such that image I, exhibits the attribute A
more than image /,;. Similarly, there is another set S4 = {X,} where each X, = (I,,1,)
denotes a pair of images such that the visibility of A is similar in both /; and 1.

In order to identify analogous pairs, a paired distance function is adopted [27]. Given a
test pair X; = (;,Iy) and a training pair X,, = (I,,1,y) € O 4, the distance between them is:

DA (Xe,Xp) = min(DLa((%,%0 ), (%5,%,)), Dla (%6, X0), (%p1,%,)) ), (1)
where D/, is the product of two distances:

D' ((xi,%)), (Xu,X1)) = da(xi, i) X da(X;,X;). (2)

This product indicates that for a query pair and training pair, if both the query-training cou-
plings are dissimilar, the distance will be high, and vice-versa. Also, the “minimum” of two
terms in Eq. 1 signifies that while the true orderings for all the training pairs are known, it is
unknown for the test pair. Hence, the distance accounts for both the possible orderings (more
or less) for the test pair '. In Eq. 2, the distance d 4 is defined as a Mahalanobis distance:

da(xi,x;) = (x; —x;)T M4 (x; — x;), 3)

Rather than using a simple Euclidean distance, this helps in giving more importance to those
feature dimensions that are more representative of a particular attribute, and less to others.

'While testing, pairs with similar attribute strength are not considered similar to previous methods.
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The metric M 4 is a square positive semi-definite matrix. It is learned using the information-
theoretic metric learning (ITML) algorithm [5]. The pairs of images in the sets S4 and
ordered O 4 constitute the pairwise constraints for ITML, such that images within similar
pairs should be pulled closer, and those within ordered pairs should be pushed farther. The
second set of constraints particularly helps in tuning M 4 towards attribute-specific fine-
grained differences within image-pairs.

3.3 Learning A Local Ranking Function

Given a test pair X; = (I;,1,/) and an attribute A, our final step is to learn a function that can
predict the relative strength of A for the two images in X;. Similar to [20], we treat this task
as a ranking problem. In order to learn X;-specific local ranking function, we compute its
distance from all the pairs in O 4 using Eq. 1, and pick the K pairs with least distance to form
O'4. The pairs in O are then used to learn a linear ranking function R 4 defined as:

Ra(x) = wﬂx. )

Here w4 € R? is the parameter vector. The goal is to learn w_4 such that the orderings of
the pairs in O, are satisfied as much as possible. That is, VX, € Oy : whx, > whx,,.
Since this problem is NP-hard, its approximate version is solved by introducing a large-
margin regularizer for w 4 and slack variables for ordering constraints [11]. This leads to the
following optimization problem:

1
min 5||va\|§4cm;/§ st. WhH(X, —Xy) > 1=7,% >0, VX, € O4 ®)

Here, || |[3 denotes squared /,-norm, and the positive real constant C balances the trade-off
between the two competing terms. The above optimization problem is solved in the primal
form itself using Newton’s method [3]. Once the ranking model w 4 is learned, prediction on
a test pair X; is done by evaluating R 4(+) on both of its images. If R 4 (X;) > R4 (xy), then I is
predicted to exhibit .4 more than I, and less otherwise. It should be noted that the objective
function adopted in [20] also considers “similar” image-pairs from S4. However, as noted
in [27], such pairs do not impact the performance much, and hence these are omitted.

4 Experiments

To examine the performance and behaviour of the proposed baselines, we compare with
state-of-the-art relative attribute learning methods on challenging relative attribute datasets.

4.1 Datasets

We evaluate on three datasets: UT-Zap50K [27] (shoes), LFW-10 [23] (faces) and OSR [20]
(outdoor scene). UT-ZapS0K dataset has two collections: UT-Zap5S0K-1 and UT-Zap50K-2,
which are collections of coarser and fine-grained pairs respectively. For OSR dataset, we
pick 1000 random pairs per attribute for training/testing from the train/test splits of [20].
For the other two datasets, we use the same train/test splits as in [27] and [23] respectively.
Among these datasets, UT-Zap50K and LFW-10 are comparatively more challenging than
OSR, as they contain a wide variety of images in terms of image categories (by category, we
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Smile Young Teeth Mascu. Eyes Mouth GdLook FrHead DkHair Bald AVg.
RelativeParts [23] 813 824 762 670 905 776 716 802 805 718 | 785
Global [20] 546 658 560 713 526 550 684 645 757 704 | 634
LocalPair [27] 597 662 535 0.1 496 534 647 656 136 679 | 624
LocalPair+ML [27] 579 684 529 730 519 527 651 69.1 727 7126 | 636
Global+Hog 674 684 717 845 707 618 676 793 724 7188 | 729
LocalPair+Hog 659 637 711 897 699 638 702 781 742 763 | 723
LocalPairtML+Hog || 67.0 649 690 909 652 652 735 809 747 770 | 728

Table 1: Accuracy comparison for the LFW-10 dataset. The best results (this work and those
of the previous approaches) are underlined.

mean specific person in LFW-10 dataset, shoe-type in UT-Zap50K dataset, and scene cate-
gory in OSR dataset). While the number of categories in OSR dataset is 8§, it is few hundreds
in the other two. Also, UT-Zap50K-2 is the most challenging dataset among these since it
targets fine-grained comparisons, and thus emphasizes the importance of local learning [27]
to capture subtle differences within image pairs.

4.2 Experimental Set-up

While the images in OSR dataset are of size 256 x 256 pixels, those in LFW-10 are 250 x 250
pixels. In UT-Zap50K dataset, the images are of varying size, and roughly around 100 x 150
pixels. We resize the images in LFW-10 dataset to 256 x 256 pixels, and those in UT-Zap50K
dataset to 144 x 96 pixels. While computing the HOG descriptor, the patch size is empirically
set to be 16 x 16 pixels for OSR and LFW-10 datasets, and 8 x 8 pixels for UT-Zap50K
dataset. After computing the HOG descriptor for all the patches, these are concatenated and
projected into a 1200-dimensional space using principal component analysis (PCA). In our
preliminary experiments, we found this to improve computational efficiency by a significant
amount, and efficacy by a small margin.

In all the experiments, we keep C = 0.1 (Eq. 5) similar to [20], initialize M 4 = I (identity
matrix), and the number of analogous pairs to be K = 100 as in [27]. For other parameters,
default settings are used. Similar to previous approaches, the results are reported in terms
of percentage of test pairs that are assigned correct orderings. It should be noted that since
we use a fixed value of ‘C’ throughout, we get slightly reduced performance than what is
reported in the respective papers [23, 27] (which tune it separately for every attribute in
every dataset). However, since we are interested in relative comparison of performances of
different methods, the absolute performance should not be a major concern. Moreover, this
also makes the results easily reproducible.

4.3 Comparison

We compare with the following approaches: Global [20], RelativeParts [23], Local-
Pair [27], and LocalPair+ML [27] (local pair with metric learning). We compare with Rela-
tiveParts [23] only on LFW-10 dataset since this approach requires identifying specific facial
regions (such as those around eyes, mouth, etc.) using [29] , and was shown to be appli-
cable only for face images. Also, we do not compare with [18] since code is not available.
Nevertheless, since [27] was shown to consistently outperform [18], we believe comparing
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Eyes-open Visible-teeth Visible-forehead Masculine

Figure 4: Learned HOG weights using Global+Hog baseline for four attributes from the
LFW-10 datasets. Left: Normalized distribution of weights. Right: Top few largest weights
overlaid on the average image of this dataset (best viewed in colour).

Dataset — UT-Zap50K-1 (coarser) dataset UT-Zap50K-2 (fine-grained) dataset

Method | Open  Pointy  Sporty  Comf. Avg. Open  Pointy  Sporty  Comf. Avg.
Global [20] 87.3 87.5 89.5 88.1 88.1 60.8 59.1 62.8 64.0 61.7
LocalPair [27] 86.8 86.4 88.9 88.2 87.6 71.6 59.6 61.1 60.2 63.1
LocalPair+ML [27] 87.4 87.8 89.9 89.5 88.7 723 62.6 62.5 61.5 64.7
Global+Hog 90.1 89.9 90.3 90.4 90.2 70.9 63.8 62.4 66.2 65.8
LocalPair+Hog 88.8 88.1 88.8 89.6 88.8 76.4 64.8 63.0 63.9 67.0
LocalPair+ML+Hog 89.9 88.3 91.5 90.5 90.0 76.2 653 64.8 63.6 67.5

Table 2: Accuracy comparison for the UT-Zap50K-1 (coarser) dataset (left) and UT-ZapSOK-
2 (fine-grained) dataset (right). The best results (this work and those of the previous ap-
proaches) are underlined.

with [27] throughout will fill the comparison gap.

While computing performance of the above approaches, we use the same features as
theirs. For OSR dataset, we use GIST [19] descriptor. For UT-Zap50K dataset, we use GIST
descriptor concatenated with colour histogram. For LFW-10 dataset, we use the (8300-
dimensional) part-based representation proposed in [23] to evaluate their method, and GIST
descriptor to evaluate [20, 27]. This is because it is computationally prohibitive to work with
the representation of [23] while learning local models [27], and using this representation
with [20] is actually the approach of [23] (though part-weights were also learned in [23], we
omit them as they had little impact on the performance).

4.4 Results and Discussion

Table 1 compares the accuracy on LFW-10 dataset. Compared to [20, 27], the approach
of [23] performs significantly better. Recall that the same procedure is used for learning the
ranking models in both [20, 23]. Hence, these performance gains should be attributed to the
part-based representation of [23]. The results obtained using the baseline methods further
validate this claim. This is because the concatenated HOG descriptor can be thought of as a
naive version of the part-based representation of [23]. The simplest Global+HOG baseline
achieves an improvement of 9.5% in the average accuracy compared to Global [20], with
maximum (13 — 18%) gains on the attributes “visible-teeth”, “eyes-open”, “masculine” and
“visible-forehead”. To further validate the performance gains achieved by Global+HOG, we
try to visualize what a global ranking model learns using the HOG descriptor (without di-
mensionality reduction). Since all the bins in the HOG descriptor have non-negative values,
the aggregate weight of the ranking model in the interval corresponding to each cell can
be thought of as a measure of confidence for identifying the relative importance of cells as
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Method Natural Open  Perspective  LargeSize  Diagonal Depth | Avg.
Global [20] 94.3 89.7 83.8 86.7 84.8 88.7 88.0
LocalPair [27] 923 88.4 825 85.0 713 88.7 85.7
LocalPair+ML [27] 95.1 91.3 86.2 88.8 89.0 90.8 90.2
Global+Hog 95.1 88.4 82.7 834 84.2 87.1 86.8
LocalPair+Hog 96.4 89.8 81.4 86.2 85.4 88.3 87.9
LocalPair+ML+Hog 96.2 90.0 82.3 86.9 87.8 88.5 88.6

Table 3: Accuracy comparison for the OSR dataset. The best results (this work and those of
the previous approaches) are underlined.

RelativeParts 23] Global [20] ~ LocalPair [27]  LocalPair+ML[27) | GlobaltHog  LocalPair+Hog  LocalPair+ML+Hog
LFW-10 78.5 63.4 62.4 63.6 729 723 72.8
OSR - 88.0 85.7 90.2 86.8 87.9 88.6
UTZ-1 - 88.1 87.6 88.7 90.2 88.8 90.0
UTZ-2 - 61.7 63.1 64.7 65.8 67.0 67.5

Table 4: Average accuracy comparison for all the three datasets. The best results (this work
and those of the previous approaches) are underlined.

learned by the model. In Figure 4, we show these weights for the four attributes mentioned
above. Collectively visualizing all the weights does not provide much insight. However,
when the top few cells with maximum aggregate weights are overlaid on the average image
of this dataset, the performance gains seem justifiable. For “eyes-open” and “visible-teeth”,
the top two cells surprisingly fall at almost the right place. For “visible-forehead”, these cells
mostly focus on the upper-half of the image. The model for “masculine” learns that regions
near cheeks and neck are indicative of this attribute. A possible reason can be that people
with prominent cheek-bones and facial hair might have been considered more masculine
than others by the annotators of LFW-10 dataset.

In Table 2, we compare the accuracy on the two collections of UT-Zap50K dataset. Inter-
estingly, the simplest baseline Global+Hog itself outperforms the current state-of-the-art ap-
proach of [27] on both coarser as well as fine-grained collections. For UT-Zap50K-2 dataset,
further improvement of around 2% is achieved by using local learning approach. However,
for UT-Zap50K-1 dataset, the performance of both global and local learning approaches are
comparable. This attributes to the inherent characteristic of this dataset, in which differences
within pairs are coarse (or more spread-out). Table 3 compares the results on OSR dataset.
Unlike the other two datasets, here the baselines perform slightly inferior than their counter-
parts that use GIST descriptor. This is because the images in OSR dataset are not as aligned
as those in the other two datasets.

Table 4 summarizes the performance of all the methods on all the datasets. These re-
sults suggest that along with the learning algorithm, choosing the right representation also
plays a crucial role in the visual comparison task, and it is possible to achieve significant per-
formance gains even by employing a simple but more appropriate representation. Domain
knowledge can also prove to be useful in designing/selecting the representation and learning
algorithm, as observed in the case of LFW-10 and UT-Zap50K datasets.

Along with accuracy, an important concern while learning visual attributes is to
avoid learning the wrong things; i.e., the properties that are (positively/negatively) re-
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lated with a particular attribute but are not its characteristics as such. E.g., while
learning the attribute “open” using more of the coastal images, the model may
learn “blue” or some other correlated property instead. Hence the learned mod-
els are expected to be decorrelated with each other while also being discriminative.
This is necessary because several applica-

tions are based on using attribute models’ :: HGlobal
response as the mid-level representation. To ' M Globl+Hog
analyze this, we compare the average ab- 0.5

solute correlation among the ranking mod- 0.4

els for all the datasets using Global and 03

Global+Hog in Figure 5. We can observe 02 |

that the correlation among the models of 01 |

Global+Hog is consistently less than that of '0

Global, and thus the former are more decor-
related than the latter. This indicates that
accounting for local structure in the repre-
sentation plays a key role in learning decor-
related ranking models. Note that a recent
work [10] also arrived at similar conclusion, though for the attribute classification task and
not for the comparison task.

LFW-10 OSR uTZ
Figure 5: Average absolute correlation among
the ranking models learned using Global and
Global+Hog approaches.

5 Conclusion

The problem of relative attribute learning involves several other sub-problems such as effi-
cient learning from paired samples, learning with weak supervision and domain understand-
ing. However, all these topics are of intense research, and one would require to solve these
first to be able to solve the attribute comparison problem at the human level. In this work,
our goal was to develop intuitively simple baselines rather than to create a new method for
learning relative attributes. Our baselines combine the existing methods with a simple yet
locally discriminative patch-based representation, that tries to encode local shape as well as
spatial information. Experiments demonstrated that comparing existing techniques for learn-
ing relative attributes with the proposed baselines helps us better appreciate the importance
of the modeling steps involved in the existing techniques. As evident from the general per-
formance level of the proposed baselines as well as existing methods, there is a lot of scope
for improvement, especially on the challenging UT-Zap50K-2 dataset.
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