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Abstract

Sparse representation and context information have been extensively applied in vi-
sual tracking. In this paper, we make the most of context information outside the target
bounding box to construct the distinct background dictionary. The pure target dictionary
is then constructed by filtering out background patches from the target bounding box. At
each frame, all relevant patches are encoded by the coupled dictionaries. Based on the
reconstruction errors, we can efficiently compute the confidence value of each bounding
box candidate. By investigating the changes of the reconstruction errors on the coupled
dictionaries, we can effectively handle occlusion. Both quantitative and qualitative re-
sults demonstrate that the proposed tracker performs favorably compared with several
state-of-the-art trackers on some challenging video sequences.

1 Introduction
Visual object tracking is one of the most active and important topics in computer vision
community with a wide range of applications [26], including surveillance, vehicle naviga-
tion, human computer interaction, to name just a few. Although significant progresses have
been made in recent years, it is still challenging to build a robust tracker due to various fac-
tors such as occlusion, illumination changes, background clutter and variations in pose and
scale.

In general, tracking algorithms can be roughly categorized into either generative or dis-
criminative methods. Discriminative trackers formulate tracking as a binary classification
problem which divides the current image into target and background. Some representative
methods include MIL tracker [1], compressive tracker (CT) [27], P-N tracker [7], Struck
tracker [4], CSK tracker [5], etc.

Generative trackers usually learn an appearance model to represent the target object and
search for the best candidate based on the similarities (or dissimilarities) between candidates
and target model. Motivated by the successful application of sparse representation to face
recognition [24], Mei et al. [13] assume that the tracked object can be represented well
by a sparse linear combination of target templates and trivial templates. Since then, many
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tracking approaches based on sparse coding have been proposed. Readers can refer to [29].
In this paper, we focus on generative methods.

In conventional sparse coding based tracking algorithms, the dictionary is composed of
holistic target templates and background templates [20]. The target templates always contain
some background parts due to the non-rigidness of the tracked object. The background tem-
plates are produced around the labeled target position with big perturbations, but some target
contents may still be included. Such circumstances will certainly decrease the discrimina-
tive ability of trackers. And worse yet, when the target is occluded for a long time, some
target templates will be updated with the tracking result at current frame. Hence, some basis
vectors will be inevitably replaced by the false positive ones. After that, when the target
reoccurs, both the real and false targets can be well expressed by the dictionary because of
the sparsity restriction, which leads to tracking drift. Sparse coding on local patches have
also been proposed as tracking methods [6]. In this paper, the target bounding box is divided
into overlapped image patches and alignment-pooling is carried out to keep the correspond-
ing position relationship. However, it has two drawbacks. First, the background information
is not fully utilized. Second, some target patches contain background parts. Found on the
above situation, we tend to construct pure background and target dictionaries.

Recently, Lu et al. [11] propose a method that detects abnormal events by learning the
normal patterns. Contextual learning [8, 28] has been successfully applied in visual tracking.
For online tracking, the available information about the object is quite limited, while the
background information around the target can be fully utilized. Hence, we can construct the
pure background dictionary, by which the true target features can be effectively learned and
characterised.

Inspired by [8, 11, 28], we propose a robust tracking method based on sparse coding with
elaborate target (positive) and background (negative) dictionaries. More specifically, we uti-
lize context information outside the target bounding box to construct the distinct background
dictionary. The target dictionary is then constructed by real target patches inside the bound-
ing box, which are identified by their reconstruction errors on the background dictionary.
For each video frame, all relevant patches are encoded by the coupled background and target
dictionaries respectively. Based on the reconstruction errors, we can compute the confidence
map and handle possible occlusions. In summary, the contributions of our method are as
follows:

(1) We propose an effective and efficient method to construct pure target and background
dictionaries, which are more discriminative than traditional dictionaries.

(2) The patches in each bounding box candidate are encoded by the coupled dictionaries.
Therefore our method can obtain reliable confidence map and handle occlusions.

(3) Although under the particle filter tracking framework, our method can efficiently com-
pute the scores of bounding box candidates based on the estimated confidence map.

1.1 Other related work
Many algorithms have been proposed for visual tracking over the past decades. For a com-
prehensive review and comparison, we refer readers to several survey papers [10, 16, 26].
Here we briefly introduce some typical methods.

Transfer learning and ensemble learning have been applied on visual tracking. In [22],
an overcomplete dictionary is learned to represent visual prior by a collection of real-world
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Figure 1: Illustration of constructing the coupled dictionaries. The red rectangles in (a) and
(b) represent the target bounding boxes. The green squares in (a), which are generated by
sliding windows outside the target bounding box, correspond to basis patches involved in the
background dictionary N. The blue squares in (a) are generated inside the target bounding
box in a similar way, which constitute the noisy target dictionary P. Although the patches A,
B, C and D in (b) are all inside the target bounding box, A and B have small reconstruction
errors w.r.t. dictionary N, while C and D have big reconstruction errors.

images. Then the learned prior is transferred to online tracking by sparse coding. With this
representation, a linear classifier is trained online to distinguish the target from background.
To make full use of the advantages of different trackers, Wang et al. [19] fuse ASLA [6],
Struck [4], DLT [18], CSK [5] and LSST [17] to construct an ensemble. Then a factorial
hidden Markov model (FHMM) for ensemble-based tracking is proposed by learning jointly
the unknown trajectory of the target and the reliability of each tracker in the ensemble.

Recently, correlation filter and circulant structure have demonstrated their advantages in
visual tracking. [2] proposes an adaptive correlation filter by minimizing the output sum of
squared errors. Motivated by [2], Danelljan et al. [3] propose to learn separate filters for
translation and scale estimation for robust tracking. Besides training two regression models
based on correlation filters for translation and scale estimation of objects, the most recent
work [12] trains an online random fern classifier to re-detect targets to realize long-term
tracking. With circulant structure, [5] increases the tracking speed on the benchmark [25],
by computing and dense sampling in Fourier domain.

Deep learning has shown its initial success in tracking. [18] puts more emphasis on
the feature learning problem by training a stacked denoising autoencoder to learn generic
image features. The offline CNN model in [21] is trained with ImageNet 2014 detection
dataset1. In online tracking, the CNN is finetuned to adapt to the target appearance. While [9]
automatically relearns the useful feature representation during the tracking process without
offline training.

2 Our Approach

2.1 Constructing Pure Coupled Dictionaries
The surrounding scene of the target provides useful context information for target localiza-
tion [28]. Normally, the outside of the target bounding box is pure background, while the
inside includes both target and background regions [8]. Hence, we first construct the pure
background dictionary with the patches in the outside context region. As shown in Figure 1,

1http://image-net.org/challenges/LSVRC/2014/
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(a) (b) (c)
Figure 2: Illustration of computing the confidence map. (a) The t-th frame image. (b) The
context window Ω is divided into nonoverlapping patches, and the red dashed line represents
the target bounding box at frame t −1. (c) The confidence map of Ω at frame t.

the red rectangle represents the target bounding box, and the whole cropped image represents
the context region Ω whose size is α (α > 1) times the target size. The green squares, which
are generated by sliding windows with padding size p in the context region, correspond to
basis patches involved in the background dictionary. We denote the background dictionary as
N ∈Rm×n, where m is the feature dimensionality of the basis patches and n is the cardinality
of the dictionary.

The blue squares, as shown in Figure 1 (a), are generated inside the target bounding box
in a similar way. These patches constitute a noisy target dictionary P = [p1, . . . ,pl ] ∈ Rm×l ,
where pi denotes the i-th basis patch as well as its feature representation. Then, we pick
out real target patches from P based on their coding quality with respect to dictionary N.
Formally, we compute the sparse coding of P as

Ĉ = argmin
C

∥P−NC∥2
2 +λ

l

∑
i=1

∥ci∥1 , (1)

where C ∈ Rn×l is the coefficient matrix with the i-th column ci being the sparse coding of
pi, ∥·∥1, ∥·∥2 denote ℓ1 and ℓ2 norm, respectively. Then the set of reconstruction errors is
expressed as R= {∥pi −Nĉi∥2

2}l
i=1. Obviously, the larger the reconstruction error, the higher

the probability of this basis belonging to the pure target dictionary. As illustrated by Figure
1 (b), the patches A and B belonging to background have small reconstruction errors. In
contrast, C and D are parts of the target object, thus have big reconstruction errors. Therefore,
we choose l′ (l′ = ⌊β × l⌋ and β ∈ (0,1)) basis vectors with top l′ highest reconstruction
errors to construct the pure target dictionary P′, which is expressed as P′ = [pi1 , . . . ,pil′ ],
where i1, . . . , il′ are the indexes of the top l′ values in R.

2.2 Computing Confidence Map

The target patches should have big and small reconstruction errors when encoded by N and
P′, respectively, while the background patches have the reversed situations. Based on this
fact, we can effectively discriminate the target object from the backgrounds. At online track-
ing in t-th frame, we construct the confidence map of the context region Ω which is centered
at the target position of frame t −1. Specifically, we normalize and divide Ω into q nonover-
lapping patches of same size as those in the dictionaries (as shown in Figure 2 (b)), denoted



M. YE, H. CHANG, X. CHEN: COUPLED OBJECT-CONTEXT DICTIONARY TRACKING 5

as O ∈ Rm×q. Then the q patches are encoded by N and P′ as follows:

Ĉ1 = argmin
C1

∥O−NC1∥2
2 +λ

q

∑
i=1

∥c1i∥1 , (2)

Ĉ2 = argmin
C2

∥∥O−P′C2
∥∥2

2 +λ
q

∑
i=1

∥c2i∥1 , (3)

where C1 ∈ Rn×q, C2 ∈ Rl′×q are the coefficient matrices, c1i and c2i are the i-th column
vectors of C1 and C2, respectively.

We define the score (confidence value) of the i-th patch as

si = ∥oi −Nĉ1i∥2
2 −

∥∥oi −P′ĉ2i
∥∥2

2 , i = 1, . . . ,q. (4)

As analyzed above, the score of target patch tends to be positive while the score of back-
ground patch is on the contrary. In order to alleviate the negative effects caused by outliers,
we adjust the patch score as below,

s′i =


0, si ≤ 0 or ∑

j∈N (i)
1(s j ≤ 0)≥ τ

1, otherwise
, i = 1, . . . ,q, (5)

where 1(·) is the indicator function, N (i) denotes the set of 8 neighbors of the i-th patch.
That is, we only care about whether a patch is target part or not, but not how large its score is.
Besides, in the light of target connectivity, a patch should be regarded as background patch
if a majority of its neighbors are background regions.

We assign the score of each patch to all the pixels inside it, then the confidence map of
the context region Ω can be obtained, as shown in Figure 2 (c).

2.3 Bayesian Tracking Framework
Our algorithm is under the Bayesian sequential estimation framework, which performs track-
ing by solving the maximum a posterior (MAP) problem,

x̂t = argmax
xt

p(xt |y1:t), (6)

where xt is the state at time t, y1:t = {y1, . . . ,yt} represents all the observations up to the t-th
frame.

In this work, the target state is defined as xt = (x,y,w,h), where x,y represent the center
location of the target and w,h denote its width and height, respectively. The motion model is
assumed to be Gaussian distributed:

p(xt |xt−1) = N(xt ;xt−1,Ψ), (7)

where Ψ is a diagonal covariance matrix whose elements are the standard deviations of the
four parameters. The observation model p(yt |xt), which is of fundamental importance to the
success of the tracker, is modeled by

p(yt |xi
t) ∝ ∑

( j,k)∈Bi

s j,k, (8)



6 M. YE, H. CHANG, X. CHEN: COUPLED OBJECT-CONTEXT DICTIONARY TRACKING

… 

… 

HSI feature 

HSI feature 

N

P’ 

(a) (b)

Figure 3: Illustration of occlusion handling. The background dictionary N keeps track of
the backgrounds around the panda. When occlusion happens, εN and εP′ will decrease and
increase, respectively, because some parts of panda are replaced by background pixels.

where xi
t represents the i-th sample (particle) of state xt , Bi is its corresponding bounding

box, and s j,k is the pixel score at location ( j,k).
Analysis: With the confidence map of the context window Ω, we can quickly compute

the likelihood of each bounding box candidate (particle) by summating the scores of all
pixels inside it. Whereas in conventional particle filter based tracking algorithms, the recon-
struction error or classifier response for each bounding box candidate needs to be computed,
which is more time consuming.

2.4 Occlusion Handling and Dictionaries Update

Handling Occlusion: Patch based tracking methods have advantages in handling occlusions.
With elaborate coupled dictionaries, our method is more robust against occlusions. Figure
3 shows that the background dictionary N keeps track of the backgrounds around the target.
When the target is occluded at right in Figure 3, the sum of reconstruction errors in target
bounding box on N (denoted as εN) will decrease because some target patches are replaced
by background patches, while that on P′ (denoted as εP′ ) will increase.

By investigating the above defined reconstruction errors at the current t-th frame and the
t ′-th (1 ≤ t ′ < t) frame which is the latest one without occlusion, we can decide if there is
occlusion in the current frame. Formally, if

εN(t)< γεN(t ′) and εP′(t)> ηεP′(t ′) (9)

are satisfied simultaneously, we conclude that there is occlusion at the current frame, where
γ ∈ (0,1) and η ∈ (1,+∞) are the given parameters. The changes of εN and εP′ for the case
illustrated above are listed in Table 1.

Table 1: The changes of εN and εP′ from (a) to (b) illustrated in Figure 3.

(a) (b)
εN 293.1 245.3
εP′ 354.2 468.1

Updating Dictionaries: To effectively adapt to the variations of target and backgrounds,
we design principled update schemes for N and P′ as follows:
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Table 2: Experiment results evaluated with CLE and SR, the best 3 values are shown in
boldfaced red, purple and blue.

L1T MTT CT STC SPT SRMT DFT IVT Ours
Ball 95 117 12.7 113 3.77 102 5.47 85.7 12.6

Basketball 97 248 122 74.3 5.57 40.7 18 27.8 6.76
Boy 42 25.7 21.9 25.9 44.7 35.1 106 73.7 7.15

CarScale 63.1 92.5 25.9 57.1 11.5 25.9 75.8 11.5 11.2
Fish 40.6 52.5 25.6 3.98 33.9 9.49 8.84 3.94 7.42

Football1 48.4 9.58 11 48.4 7.71 29.8 1.97 8.83 5.37
Kitesurf 39 11.8 10.3 66.2 67.7 24.4 29.5 74.8 5.89
Mhyang 25 4.03 24.1 4.53 12.7 2.68 9.06 2.06 8.12
Panda 92.2 93.4 117 76 80.1 67.5 183 175 5.37

Polarbear 29.9 12.4 20.4 21.5 16.9 20.9 12.5 25.2 7.69
Skiing 158 276 257 227 145 262 276 255 6.38

Subway 4.86 193 11.5 143 113 137 3.31 135 10.7
Average 61.3 94.7 55 71.7 45.2 63.1 60.8 73.2 7.89

L1T MTT CT STC SPT SRMT DFT IVT Ours
Ball 15.4 12 52 11.5 97.8 13.6 83.4 11.1 59

Basketball 23.3 2.76 24.3 23.6 98.5 44 71.6 37.5 96.4
Boy 48.2 45 61 66.3 65 16.6 48.3 62.1 86.4

CarScale 36.9 55.6 44.8 46.8 93.3 68.3 44.8 96.8 79
Fish 12.6 3.99 22.5 37.2 39.1 83.2 86.1 100 99.4

Football1 12.2 73 32.4 35.1 78.4 35.1 100 68.9 94.6
Kitesurf 29.8 57.1 41.7 28.6 35.7 29.8 56 16.7 76.2
Mhyang 68.8 100 31.5 86 80.5 96.4 77.5 97.8 98
Panda 1.66 3.32 4.98 47.3 41.9 14.9 22 16.6 78

Polarbear 43.4 65 36.9 31 32.3 29.6 59.8 35.6 97.3
Skiing 1.23 11.1 7.41 11.1 12.3 11.1 6.17 7.41 40.7

Subway 82.3 7.43 76.6 22.3 28.6 22.3 99.4 20.6 75.4
Average 31.3 36.4 36.3 37.2 58.6 38.7 62.9 47.6 81.7

• Dictionary N stores the background patches of the latest κ frames. When the target
has been identified at t-th frame, we obtain the background patches as presented in
Section 2.1, and use them to partially update N.

• Dictionary P′ contains the target patches of the first frame and the latest κ −1 frames.
When the target is occluded by judging condition (9), we do not update P′. Otherwise,
we partially update P′ with the target patches at the current frame.

3 Experiments
In this section, we evaluate the performance of the proposed algorithm with several state-of-
the-art trackers, including L1T [13], MTT [30], CT [27], STC [28], SPT [23], SRMT [31],
DFT [15], IVT [14]. These trackers are run with publicly available source codes provided by
the authors. For fair comparison, all the trackers are executed with well adjusted parameters
to get the performances. And because the trackers involve randomness, we repeat the experi-
ments several times on each sequence and choose the best results. We choose 12 challenging
video sequences from the benchmark [25] and VOT Challenge 20142.

3.1 Implementation Details
In this paper, we solve sparse coding problems using the public sparse learning package
SPAMS 3. We utilize a normalized histogram in the HSI color space [23] as the feature for

2http://www.votchallenge.net/vot2014/
3http://spams-devel.gforge.inria.fr/
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Figure 4: Precision and success plots over all the 12 tested sequences. The precision score
of each tracker at 20 pixels is listed in the legend of the left plot. The right plot presents the
area-under-the-curve (AUC) score for each method.

each patch, which is robust to lighting changes. All the experiments are implemented in
MATLAB R2014a on a 3.10GHz CPU with 6 GB memory. The current tracking speed of
our tracker runs at 1.2 frames per second (fps) without optimization. The patch size r is set to
6 ∼ 16 based on the input target size and the padding size p is half of the patch size. Suppose
the target’s width and height are w and h in the first frame, the normalized width and height
of Ω are

⌈ w
α×r

⌉
×α2r and

⌈ h
α×r

⌉
×α2r. The ratio α which decides the size of window Ω

is chosen as 2. The proportion β in Section 2.1 is 0.55. We use γ = 0.9 and η = 1.1 in
inequations (9). The parameter κ in Section 2.4 is empirically defined as 3. The threshold τ
is fixed to 7 in Eq. (5). We sample 400 target candidates in each frame.

3.2 Empirical Results

Two conventional performance metrics are adopted for quantitative comparison: average
center location error (CLE) and success rate (SR), as shown in Table 2. For each frame,
the object is considered being successfully tracked if the overlap percentage is above 0.5.
Besides, we provide the precision and success plots over all the 12 tested sequences, as
shown in Figure 4.

3.3 Analysis

Overall, our method significantly outperforms the 8 state-of-the-art trackers in both precision
and success plots. In Table 2, our approach is almost always among the best two and the best
items occupy half of the tested data. The qualitative result is presented in Figure 5. Then
we conduct a qualitative analysis of our tracker on several challenging sequences, combined
with Figure 5.

In the Basketball sequence, most trackers do not drift when the target is occluded at
frame 18. Our track performs consistently well even there are some distractors wearing the
same jersey, e.g., at frame 644. At the end of this sequence when the illumination changes
dramatically, our tracker can still track the object accurately due to the robust HSI features.
In Boy sequence where the object undergoes fast motion and motion blur, only our track-
er does not drift at the end. There exists occlusion and scale variations in the CarScale
sequence, but our tracking performance is pretty good. In sequences Kitesurf, Panda and
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L1T MTT CT STC SPT SRMT DFT IVT Ours

Figure 5: The experimental comparisons of our method and 8 state-of-the-art trackers on 6
sequences.

Skiing, the objects suffer severe rotation, shape deformation and occlusion, our tracker ac-
quires robust performances based on the accurate representations of targets and backgrounds
and the robust dictionaries update strategies.

4 Conclusion and Discussion
In this paper, we propose to construct elaborate dictionaries for target and backgrounds re-
spectively. Each patch candidate is sparsely represented by the coupled dictionaries, which
obviously enlarges the gaps between background parts and target parts, thus improves the
discriminative ability. Experiments on challenging video sequences demonstrate that the
proposed tracker performs favorably compared with several state-of-the-art trackers.

In our future work, we will pursue more effective schemes for patch scoring and abnor-
mal patch detection, and the possibility of incorporating structure and location information.
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