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Figure 1: Illustration of constructing the coupled dictionaries. The red
rectangles in (a) and (b) represent the target bounding boxes. The green
squares in (a), which are generated by sliding windows outside the target
bounding box, correspond to basis patches involved in the background
dictionary N. The blue squares in (a) are generated inside the target
bounding box in a similar way, which constitute the noisy target dictio-
nary P.

Motivation: In conventional sparse coding based tracking algorithms, the
dictionary is composed of holistic target templates and background tem-
plates [2]. The target templates always contain some background parts
due to the non-rigidness of the tracked object. The background templates
are produced around the labeled target position with big perturbations, but
some target contents may still be included. Such circumstances will cer-
tainly decrease the discriminative ability of trackers. Found on the above
situation, we tend to construct pure background and target dictionaries.
Constructing Pure Coupled Dictionaries: The outside of the target
bounding box is pure background, while the inside includes both target
and background regions [1]. Hence, we first construct the pure back-
ground dictionary with the patches in the outside context region. As
shown in Figure 1, the green squares, which are generated by sliding win-
dows in the context region, correspond to basis patches involved in the
background dictionary N ∈ Rm×n. The blue squares, as shown in Figure
1 (a), constitute a noisy target dictionary P = [p1, . . . ,pl ] ∈ Rm×l . Then,
we pick out real target patches from P based on their coding quality with
respect to dictionary N.

Ĉ = argmin
C

∥P−NC∥2
2 +λ

l

∑
i=1

∥ci∥1 , (1)

where C ∈Rn×l is the coefficient matrix with the i-th column ci being the
sparse coding of pi. Then the set of reconstruction errors is expressed as
R = {∥pi −Nĉi∥2

2}l
i=1. As illustrated by Figure 1 (b), the patches A and

B belonging to background have small reconstruction errors. In contrast,
C and D are parts of the target object, thus have big reconstruction errors.
Therefore, we choose l′ (l′ = ⌊β × l⌋ and β ∈ (0,1)) basis vectors with top
l′ highest reconstruction errors to construct the pure target dictionary P′,
which is expressed as P′ = [pi1 , . . . ,pil′ ], where i1, . . . , il′ are the indexes
of the top l′ values in R.
Computing Confidence Map: The target patches should have big and
small reconstruction errors when encoded by N and P′, respectively, while
the background patches have the reversed situations. At online tracking
in t-th frame, we construct the confidence map of the context region Ω
which is centered at the target position of frame t − 1. Specifically, we
normalize and divide Ω into q nonoverlapping patches of same size as
those in the dictionaries (as shown in Figure 2 (b)), denoted as O ∈Rm×q.
Then the q patches are encoded by N and P′ as follows:

Ĉ1 = argmin
C1

∥O−NC1∥2
2 +λ

q

∑
i=1

∥c1i∥1 , (2)

Ĉ2 = argmin
C2

∥∥O−P′C2
∥∥2

2 +λ
q

∑
i=1

∥c2i∥1 , (3)
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Figure 2: Illustration of computing the confidence map. (a) The t-th frame
image. (b) The context window Ω is divided into nonoverlapping patches,
and the red dashed line represents the target bounding box at frame t −1.
(c) The confidence map of Ω at frame t.

where C1 ∈ Rn×q, C2 ∈ Rl′×q are the coefficient matrices, c1i and c2i are
the i-th column vectors of C1 and C2, respectively.

We define the score (confidence value) of the i-th patch as

si = ∥oi −Nĉ1i∥2
2 −

∥∥oi −P′ĉ2i
∥∥2

2 , i = 1, . . . ,q. (4)

In order to alleviate the negative effects caused by outliers, we adjust the
patch score as below,

s′i =


0, si ≤ 0 or ∑

j∈N (i)
1(s j ≤ 0)≥ τ

1, otherwise
, i = 1, . . . ,q, (5)

where 1(·) is the indicator function, N (i) denotes the set of 8 neighbors
of the i-th patch. We assign the score of each patch to all the pixels inside
it, then the confidence map of the context region Ω can be obtained, as
shown in Figure 2 (c).
Bayesian Tracking Framework: Our algorithm is under the Bayesian
sequential estimation framework, which performs tracking by solving the
maximum a posterior (MAP) problem. The observation model p(yt |xt) is
modeled by

p(yt |xi
t) ∝ ∑

( j,k)∈Bi

s j,k, (6)

where xi
t represents the i-th sample (particle) of state xt , Bi is its corre-

sponding bounding box, and s j,k is the pixel score at location ( j,k).
Empirical Results: We provide the precision and success plots over all
the 12 tested sequences, as shown in Figure 3.
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CT [0.607]
STC [0.536]
IVT [0.520]
SRMT [0.500]
MTT [0.449]
L1T [0.365]
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Figure 3: Precision and success plots over all the 12 tested sequences.
The precision score of each tracker at 20 pixels is listed in the legend of
the left plot. The right plot presents the area-under-the-curve (AUC) score
for each method.
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