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Camera pose and intrinsic parameters estimation from n 2D-to-3D point
correspondences is a known problem in computer vision and photogram-
metry. Depending on the set of unknown parameters, the problem is called
Perspective-n-Point (PnP) when only absolute camera pose is unknown
or PnPf when focal length is unknown as well. Projection error functions
are highly non-convex in focal length, so before methods for PnPf were
published, the only choice was to do exhaustive search not suitable for
real-time applications. The EPnP method was extended to PnPf problem
in [4], we refer to this method as UPnPf. RPnP inspired the authors of
[5] to propose a method GPnPf+GN for PnPf problem. They use angle
constraints to build specific polynomial system and solve it, then they use
nonlinear refinement with Gauss-Newton algorithm. It gave superior re-
sults to [4] both in speed and accuracy in general case, and was more
accurate in planar case, although UPnPf [4] was faster.

This paper is devoted to a method for PnPf problem for arbitrary
amount of points, more or equal to 6. We consider both planar and non-
planar cases. We fix the space of the search as a linear combination of
several right singular vectors of the least squares system matrix. We use
linear programming techniques to find feasible solutions faster. Then we
do nonlinear refinement with Levenberg-Marquardt.

The barycentric representation of 3D points allows to express n 3D
points pi as a frame-independent linear combination of 4 basis points c j:
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Each point projection as described in [2, 4] leads to two independent
linear w.r.t. basis points’ coordinates equations. The equations form a
system with matrix M. The solution lies in a null-space (kernel) of M and
can be expressed as a linear combination of kernel basis with coefficients
βi

x =
N

∑
i=1

βiqi, (1)

where qi are the right-singular vectors of M corresponding to the N null
singular values of M. There are distance constraints which need to be
satisfied:
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where ri j is a known distance between i-th and j-th basis points. Distance
constraints are quadratic w.r.t. βi and in the same time are linear w.r.t. b:
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While the EPnP method tries to solve the constraints system (2), we
solve (in a set defined by (1)) a least squares problem

FR(x) = ‖Mx‖2 + γ‖Lb− r‖2→min, (4)

where γ is some coefficient. Distance constraints for the PnPf problem
have the form:
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for definition of di,gi see paper. Constraint is quadratic in di,gi, but

if we choose the unknowns vector b analogously to (3), it becomes linear
with b1 equal to b given in (3) and:

b2 = f 2b1, bT = (b1T
, b2T

)T . (6)

So, for the PnPf problem we get the analogous function as (4) for
PnP problem as described in the paper. In the Algorithm described in

Figure 1: Mean reprojection error and time of the PnPf methods w.r.t.
varying noise level, points in general 3D configuration

the paper, for each N = 1,2,3 we find candidate solutions (1), for which
we formulate additional linear constraints and solve using MATLAB’s
linprog.

After a loop over N, we choose the solutions which have the least
amount of points lying behind the camera, and among these solutions
choose the by comparing the value of FR(x) (4). This chosen solution is
subsequently refined by Levenberg-Marquardt procedure [3].

Algorithm implementation is available at http://sites.google.
com/site/alexandervakhitov/projects/epnpfr.

We made two sets of experiments: comparative test and a test using
real images. Synthetic experiments test performance of the method w.r.t.
varying noise level and point number. Here we show at the figure the
results for some of measured parameters for general point configuration.

The aim is to demonstrate applicability of the algorithm in a real set-
ting. We made three shots of a non-moving scene with Nikon D3100 cam-
era with several focal length settings. We performed standard structure-
from-motion reconstruction using one initial frame pair.

We matched the SIFT points from one of the frames in the initial
pair and every other frame. We ran our algorithm and the best state-of-
art GPnPf+GN algorithm with the RANSAC loop, choosing 6 points [1].
When both methods returned results, they were different less than for
1% in focal length and reprojection error, except 105 mm focal length
(average error GPnPf+GN 2.53 pix, EPnPfR 0.77 pix).

Proposed algorithm is as accurate and stable as the state-of-the-art
methods, and more than 2 times faster.
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