
HIGHLANDER, RODRIGUEZ: EFFICIENT TRAINING OF CNNS USING FFT AND OAA 1

Very Efficient Training of Convolutional
Neural Networks using Fast Fourier
Transform and Overlap-and-Add

Tyler Highlander∗

highlander.2@wright.edu

∗College of Eng. and Comp. Science
Wright State University
Dayton, Ohio, USA

Andres Rodriguez∗,?

andres.rodriguez.8@us.af.mil

?Air Force Research Laboratory
Dayton, Ohio, USA

Abstract

Convolutional neural networks (CNNs) are currently state-of-the-art for various clas-
sification tasks, but are computationally expensive. Propagating through the convolu-
tional layers is very slow, as each kernel in each layer must sequentially calculate many
dot products for a single forward and backward propagation which equates to O(N2n2)
per kernel per layer where the inputs are N×N arrays and the kernels are n× n arrays.
Convolution can be efficiently performed as a Hadamard product in the frequency do-
main. The bottleneck is the transformation which has a cost of O(N2 log2 N) using the
fast Fourier transform (FFT). However, the increase in efficiency is less significant when
N � n as is the case in CNNs. We mitigate this by using the “overlap-and-add” tech-
nique reducing the computational complexity to O(N2 log2 n) per kernel. This method
increases the algorithm’s efficiency in both the forward and backward propagation, re-
ducing the training and testing time for CNNs. Our empirical results show our method
reduces computational time by a factor of up to 16.3 times the traditional convolution
implementation for a 8 × 8 kernel and a 224 × 224 image.

1 Introduction
Convolutional neural networks (CNNs) achieved state-of-the-art classification rates on vari-
ous datasets [1, 4, 7], but require significant computational resources. For example, AlexNet
[5] has over 60 million free parameters trained with stochastic gradient descent requiring
thousands of forward and backward propagations through a network with 5 convolutional
layers. A more recent CNN, GoogLeNet [12], has various layers within layers amounting
to 59 convolutional layers. Propagating through these convolutional layers is the computa-
tional bottleneck of training and testing CNNs. Standard convolutional layers are slow, as
each kernel must calculate many dot products for a single forward and backward propagation
which equates to O(N2n2) per kernel, where the inputs are N×N arrays and the kernels are
n× n arrays. To converge to a local minimum, CNNs usually require hundreds of epochs.
An epoch consists of propagating all the training samples in the dataset through the network
once. In addition, it is common to train multiple CNNs for one task and compute an average

c© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms. Pages 160.1-160.9

DOI: https://dx.doi.org/10.5244/C.29.160

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Krizhevsky and Hinton} 2009

Citation
Citation
{LeCun and Cortes} 2010

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

2 HIGHLANDER, RODRIGUEZ: EFFICIENT TRAINING OF CNNS USING FFT AND OAA

of the multiple outputs in testing. With over one million training images in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [1] and hundreds of epochs needed for
training each CNN, reducing the complexity of the convolution operation reduces training
time.

Convolution can be efficiently computed in the frequency domain as a Hadamard prod-
uct. The computational bottleneck is the Fourier transform between the space and the fre-
quency domain. For an input of size N2, this can be efficiently computed using fast Fourier
transforms (FFTs) with complexity O(N2 log2 N). Mathieu et al. [8] demonstrated that this
reduces the training and testing time of CNNs. In their work they efficiently calculated FFTs
on a GPU and used these transforms to perform convolutions via a Hadamard product in the
frequency domain.

In this paper, we propose to use the overlap-and-add (OaA) technique [10] to further
reduce the training and testing complexity to O(N2 log2 n) per kernel. Note that the overlap-
and-save [10] is a similar technique that may be marginally faster but has the same com-
plexity. In a CNN convolutional layer, the input array and the set of K kernel arrays have
a depth of size C, e.g., C = 3 for an RBG input image. The total number of convolutions
in a CNN convolutional layer is KC; each channel of each kernel is convolved with the re-
spective channel in the input array. For each of these convolutions, OaA should be used to
improve efficiency with no cost in performance. Section 2 explains the OaA technique and
our convolution implementation. In Section 3 we demonstrate that our method computation-
ally outperforms (by a factor of up to 16.3) traditional implementations. We offer concluding
remarks in Section 4.

2 Overlap-and-Add

In OaA, the input is broken into N2/n2 (rounded up) blocks equal to the kernel size n×n. A
convolution between each block and the kernel is computed and the results are overlapped
and added. Figure 1 illustrates a simple 1-D overlap-and-add method for spacial convolution
(that can easily generalize to 2-D). The input array is first split into smaller blocks that are
the size of the kernel. Smaller convolutions are computed between the kernel and the block
inputs. The resulting convolutions are overlapped by n− 1, where n is the length of the
kernel, and added together to create the same results as a traditional spacial convolution.

Figure 1: 1-D Overlap-and-Add convolutions

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Mathieu, Henaff, and LeCun} 2014

Citation
Citation
{Oppenheim, Schafer, Buck, etprotect unhbox voidb@x penalty @M {}al.} 1989

Citation
Citation
{Oppenheim, Schafer, Buck, etprotect unhbox voidb@x penalty @M {}al.} 1989

HIGHLANDER, RODRIGUEZ: EFFICIENT TRAINING OF CNNS USING FFT AND OAA 3

Each convolution in OaA can be efficiently computed in the frequency domain, where
the bottleneck is the complexity of each 2-D fast Fourier transform O(n2 log2 n). The total
complexity for the entire input and kernel is the number of blocks times the complexity of
each block convolution, i.e.,O(N2 log2 n). Table 1 compares the complexity of each method,
where spaceConv refers to the traditional convolution in the space domain, FFTconv refers
to convolution via a Hadamard product in the frequency domain without overlap-and-add,
and OaAconv refers to convolution using overlap-and-save where each smaller convolution
is efficiently computed in the frequency domain.

Method Computational Complexity
spaceConv O(N2n2)

FFTconv O(N2log2N)

OaAconv O(N2log2n)
Table 1: Computational Complexity Comparison

When N� n as is the common case in CNN architectures, OaAconv reduces the compu-
tational complexity by a factor of n2

log2 n over spaceConv and by a factor of logN
logn over FFTconv.

For example, for a 256× 256 input array with a 5× 5 kernel (typical values in a CNN ar-
chitecture), spaceConv has a complexity of O(2562× 25), FFTconv has a complexity of
O(2562×8), and OaAconv has a complexity of O(2562×2.3).

The overall time complexity of OaAconv can be further reduced by noting that all the
block convolutions can be computed in parallel. If N2/n2 threads are available (a fair as-
sumption for modern GPUs), the complexity on each thread is n2 log2 n, and the overall time
complexity is O(max(N2,n2 log2 n)) which is usually O(N2). We can get additional speed
up by taking advantage of the NVIDIA CUDA Fast Fourier Transform library (cuFFT) that
computes each individual FFTs up to 10 times faster [9] (see also [13]). However, in order
to have a fair comparison, our experiments in this paper are run on single threads. As part of
this work, we created a Caffe [3] fork1 that uses a multi-thread GPU implementation of OaA
for efficient convolutions.

A possible area of concern for OaA is the additional cost of breaking the input into blocks
and the overlapping and adding cost after each convolution. Our experiments show that the
performance increase of the OaA technique outweigh these overhead costs.

It is worth noting that although OaA always reduces the computational complexity in
testing (and training), it is particularly beneficial in implementations such as Sermanet et
al. [11] when the test image is much larger than the training images, and uses a sliding
window approach across a pyramid of scales for simultaneous detection (localization) and
classification.

3 Experiments and Results

3.1 Training consistency

In this experiment we use each method of convolutions to train the CNN LeNet-5 [6] archi-
tecture using the MNIST [7] dataset. The goal of this experiment is to show empirically that
the methods are equivalent. Each network is trained for only 100 epochs as all we need to

1github.com/THighlander

Citation
Citation
{Nvidia} 2010

Citation
Citation
{Vasilache, Johnson, Mathieu, Chintala, Piantino, and LeCun} 2015

Citation
Citation
{Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, and Darrell} 2014

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2014

Citation
Citation
{LeCun and Bengio} 1995

Citation
Citation
{LeCun and Cortes} 2010

4 HIGHLANDER, RODRIGUEZ: EFFICIENT TRAINING OF CNNS USING FFT AND OAA

show is consistency. Each CNN network is trained five times with each type of convolution
technique, and their classification rate averages are shown in Table 2.

Convolution method Performance rate (averaged over 5 networks)
spaceConv 92.48%
FFTconv 92.41%
OaAconv 92.46%

Table 2: Performance rates for networks trained with various convolution methods

As expected, all three methods averaged within 0.07% of each other. The reason there is
a non-zero difference is the random parameter initialization in training each CNN.

3.2 Time vs. number of kernels

In this experiment we compare the required total propagation time through one convolu-
tional layer as the number of kernels in the layer increases. To compare computational time,
note that additional channels in the CNN convolutional layer input array can be treated as
a multiplicative factor in the number of kernels, i.e., the computations required to convolve
a C-channels input array with a set of K-channels kernels is equivalent to convolving a 1-
channel input array with a set of 1-channel KC kernels. In our experiments, the input array
is of size 32 × 32 and each kernel is of size 5 × 5, both with 1-channel. Figure 2 shows
the speed-up factor of FFTconv and OaAconv compared to spaceConv in the forward prop-
agation of the convolutional layer as the number of kernels varies. The number of kernels
is varied from 25 to 750 with a discrete step of 25. Each “number of kernels” experiment is
repeated 10 times and the results are averaged.

Figure 2: Speed-up over spaceConv vs. number of kernels in forward propagation

HIGHLANDER, RODRIGUEZ: EFFICIENT TRAINING OF CNNS USING FFT AND OAA 5

FFTconv and OaAconv outperform spaceConv, and OaAconv outperforms FFTconv at
every step. FFTconv and OaAconv have an additional initialization cost: in OaA the input
array must be divided, and in both methods the input (or divided input) array and kernel
must be zero-padded, so that each side is N+n−1 in FFTconv and 2n−1 in OaAconv, prior
to computing the Fourier transforms. As the number of kernels increases, these additional
initialization costs becomes less significant.

To quantify the initialization cost of FFTconv and OaAconv, we convolved an input array
of size 224 × 224 with a kernel of size 8 × 8. This experiment is repeated 10 times and
averaged. OaAconv spends 1.6% of its total calculations on handling the overhead, while
FFTconv spends 8.2%. In our implementation spaceConv does not require any overhead.
The large difference between the input size and kernel size causes FFTconv to have a larger
overhead than OaAconv.

Figure 3 shows the speed-up over spaceConv vs. number of kernels for the backward
propagation. Our method outperforms FFTconv more than in the forward propagation. The
reason for this is that the backward propagation contains two actual convolutions per kernel:
one convolution to propagate the error through the layer and another to calculate the change
in weight generated by this error.

Figure 3: Speed-up over spaceConv vs. number of kernels in backward propagation

These experiments show that the additional initialization costs of using OaAconv and
FFTconv are mitigated by the lower complexity of these methods. The more kernels used,
the larger the performance increase of our method.

3.3 Time vs. kernel size

In this experiment we vary the size of the kernel while keeping the input size constant. The
size of the input array is 64 × 64. The number of kernels used is held constant at 100.
Figures 4 and 5 show the speed-up over spaceConv vs. kernel size for the forward and
backward propagation, respectively. The kernel sizes vary from 1 to 64 with a discrete step
of 1. Each “kernel size” experiment is repeated 10 times and the results are averaged.

6 HIGHLANDER, RODRIGUEZ: EFFICIENT TRAINING OF CNNS USING FFT AND OAA

Figure 4: Speed-up over spaceConv vs. kernel size in forward propagation

Figure 5: Speed-up over spaceConv vs. kernel size in backward propagation

HIGHLANDER, RODRIGUEZ: EFFICIENT TRAINING OF CNNS USING FFT AND OAA 7

In the forward propagation in Figure 4, the performance of FFTconv and OaAconv con-
verge at 64 as expected. An interesting aspect of this graph is the various performance
peaks at different kernel sizes. This is because the FFT software [2] is optimal for Fourier
transforms with power of 2 sides along each dimension. We can leverage this fact when
designing CNN architectures to further reduce computational requirements, and/or we can
zero-pad to the nearest power of 2 to complement the design of the FFT algorithm. Note that
the backward propagation has peak performances at different kernel sizes due to different
zero-padding sizes prior to the Fourier transform.

3.4 Time vs. input size

In this experiment we test the performance of multiple input sizes while holding the ker-
nel size constant at 5 × 5. The input sizes varied from 4× 4 to 256× 256 with a discrete
step of 4× 4 for the forward propagation experiment and a discrete step of 8× 8 for the
backward propagation experiment. Different discrete steps are used to highlight the FFT
algorithm’s best performing size transforms for each propagation. Each “input size” exper-
iment is repeated 10 times and the results are averaged. Figures 6 and 7 show the speed-up
over spaceConv vs. input size for the forward and backward propagation, respectively.

Figure 6: Speed-up over spaceConv vs. input size in forward propagation

For inputs larger than 8×8 input array sizes (the typical scenario for CNN architectures),
OaAconv always outperforms the other methods. The speed-up in the backwards propaga-
tion is more significant. The error propagation is enhanced with OaAconv as the kernels are
small.

Citation
Citation
{Frigo and Johnson} 1998

8 HIGHLANDER, RODRIGUEZ: EFFICIENT TRAINING OF CNNS USING FFT AND OAA

Figure 7: Speed-up over spaceConv vs. input size in backward propagation

.

4 Conclusion

In this paper we demonstrated that OaAconv can improve the efficiency of CNNs over tradi-
tional convolution and convolution via a Hadamard product in the frequency domain. Even
though OaAconv must calculate more transforms than FFTconv, the fact that the transforms
are smaller outweighs the cost of having to calculate more. In order to have fair comparisons
we conducted our experiments on single threads. In practice OaA should be implemented
such that each block convolution is computed in parallel, and each FFT is implemented with
a GPU FFT library, e.g., cuFFT [9] to achieve maximum performance.

In future work we plan to optimize the FFT implementations for small size transforms,
and design a CNN entirely in the frequency domain eliminating the bottleneck of the trans-
forms. By creating a CNN that is in the frequency domain, the convolutional layers would
only be the Hadamard products. The current challenge to this is to efficiently map an approx-
imation of the non-linear transforms of CNNs (e.g., rectified linear units, sigmoid function,
and/or hyperbolic tangent) to the frequency domain.

Acknowledgements

We would like to thank Prof. Mateen Rizki of Wright State University for the helpful dis-
cussions, and the Air Force Office of Scientific Research (AFOSR) for providing the main
funding for this work through LRIR 14Y06COR. Approved for public release, case number:
88ABW-2015-3481

Citation
Citation
{Nvidia} 2010

HIGHLANDER, RODRIGUEZ: EFFICIENT TRAINING OF CNNS USING FFT AND OAA 9

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255, 2009.

[2] Matteo Frigo and Steven G Johnson. Fftw: An adaptive software architecture for the
FFT. In Proceedings of IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, volume 3, pages 1381–1384, 1998.

[3] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the ACM International Conference on
Multimedia, pages 675–678, 2014.

[4] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Computer Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[6] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361:310, 1995.

[7] Yann LeCun and Corinna Cortes. Mnist handwritten digit database. AT&T Labs [On-
line]. http://yann. lecun. com/exdb/mnist, 2010.

[8] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional
networks through FFTs. International Conference on Learning Representations, 2014.

[9] CUDA Nvidia. Cufft library. http://docs.nvidia.com/cuda/cufft, 2010.

[10] Alan V Oppenheim, Ronald W Schafer, John R Buck, et al. Discrete-time signal pro-
cessing, volume 2. Prentice-hall Englewood Cliffs, 1989.

[11] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann
LeCun. Overfeat: Integrated recognition, localization and detection using convolu-
tional networks. In International Conference on Learning Representations. CBLS,
April 2014.

[12] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

[13] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino,
and Yann LeCun. Fast convolutional nets with fbfft: A gpu performance evaluation.
International Conference on Learning Representations, 2015.

