
Very Efficient Training of Convolutional Neural Networks using Fast Fourier Transform and
Overlap-and-Add

Tyler Highlander∗

highlander.2@wright.edu

∗College of Engineering and Computer Science
Wright State University
Dayton, Ohio, USA

Andres Rodriguez∗,?

andres.rodriguez.8@us.af.mil

?Air Force Research Laboratory
Dayton, Ohio, USA

Convolutional neural networks (CNNs) are currently state-of-the-art for
various classification tasks, but are computationally expensive. Propa-
gating through the convolutional layers is very slow, as each kernel in
each layer must sequentially calculate many dot products for a single for-
ward and backward propagation which equates to O(N2n2) per kernel per
layer where the inputs are N ×N arrays and the kernels are n× n arrays.
Convolution can be efficiently performed as a Hadamard product in the
frequency domain. The bottleneck is the transformation which has a cost
of O(N2 log2 N) using the fast Fourier transform (FFT). However, the in-
crease in efficiency is less significant when N � n as is the case in CNNs.
We mitigate this by using the “overlap-and-add” technique reducing the
computational complexity to O(N2 log2 n) per kernel. This method in-
creases the algorithm’s efficiency in both the forward and backward prop-
agation, reducing the training and testing time for CNNs. Our empirical
results show our method reduces computational time by a factor of 16.3
times the traditional convolution implementation for a 8 × 8 kernel and a
224 × 224 input array.

Mathieu et al. [2] demonstrated that doing full convolutions as Hada-
mard products in the frequency domain significantly reduces the training
and testing time of CNNs. In their work they efficiently calculated FFTs
on a GPU and used these transforms to perform convolutions via a Hada-
mard product in the frequency domain.

In this paper, we propose to use the overlap-and-add (OaA) technique
[4] to further reduce the training and testing complexity to O(N2 log2 n)
per kernel. Note that the overlap-and-save [4] is a similar technique that
may be marginally faster but has the same complexity. Table 1 com-
pares the complexity of each method, where spaceConv refers to the tradi-
tional convolution in the space domain, FFTconv refers to convolution via
a Hadamard product in the frequency domain without overlap-and-add,
and OaAconv refers to convolution using overlap-and-save where each
smaller convolution is efficiently computed in the frequency domain.

Method Computational Complexity
spaceConv O(N2n2)

FFTconv O(N2log2N)

OaAconv O(N2log2n)
Table 1: Computational complexity comparison

In OaAconv, the input is broken into N2/n2 blocks equal to the kernel
size n×n. A convolution between each block and the kernel is computed
and the results are overlapped and added. Figure 1 illustrates a simple 1-D
overlap-and-add method for spacial convolution (that can easily general-
ize to 2-D). The input is first split into smaller blocks that are the size of
the kernel. Smaller convolutions are computed between the kernel and the
block inputs. The resulting convolutions are then added together to cre-
ate the same results as a traditional spacial convolution. In practice each
convolution is computed as a Hadamard product in the frequency domain.
Note that even though the OaAconv method calculates more transforms
than the FFTconv method, the fact that the transforms are smaller greatly
outweighs the cost of having to calculate more.

Figure 1: 1-D Overlap-and-Add convolutions

The overall time complexity of OaAconv can be further reduced by
noting that all the block convolutions can be computed in parallel. If
N2 threads are available (a fair assumption for modern GPUs), the com-
plexity on each thread is n2 log2 n, and the overall time complexity is
O(max(N2,n2 log2 n)) which is usually O(N2). We can get additional
speed up by taking advantage of the NVIDIA CUDA Fast Fourier Trans-
form library (cuFFT) that computes each individual FFTs up to 10 times
faster [3] (see also [5]). However, in order to have a fair comparison, our
experiments in this paper run on single threads. As part of this work, we
created a Caffe [1] fork1 that uses a multi-thread GPU implementation of
OaA for efficient convolutions.

We computed the increased in performance of FFTconv and OaAconv
as we varied the number of kernels, the size of kernels, and the size of the
input array for both forward and backward propagations. Figure 2 shows
the speed-up factor of FFTconv and OaAconv compared to spaceConv in
the forward propagation as the number of kernels is varied from 25 to
750 with a discrete step of 25. Each “number of kernels” experiment is
repeated 10 times and the results are averaged. The input array is of size
32 × 32 and each kernel is of size 5 × 5. In this and most other ex-
periments described in the full-paper, FFTconv and OaAconv outperform
spaceConv, and OaAconv outperforms FFTconv at every step.

Figure 2: Speed-up over spaceConv vs. num of kernels in forward prop.

In future work we plan to optimize the FFT implementations for small
size transforms, and design a CNN entirely in the frequency domain elim-
inating the bottleneck of the transforms. By creating a CNN that is in the
frequency domain, the convolutional layers would only be the Hadamard
products. The current challenge to this is to efficiently map an approxi-
mation of the non-linear transforms of CNNs (e.g., rectified linear units,
sigmoid function, and/or hyperbolic tangent) to the frequency domain.
[1] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,

Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Dar-
rell. Caffe: Convolutional architecture for fast feature embedding.
In Proceedings of the ACM International Conference on Multimedia,
pages 675–678, 2014.

[2] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of
convolutional networks through FFTs. International Conference on
Learning Representations, 2014.

[3] CUDA Nvidia. Cufft library, 2010.
[4] Alan V Oppenheim, Ronald W Schafer, John R Buck, et al. Discrete-

time signal processing, volume 2. Prentice-hall Englewood Cliffs,
1989.

[5] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala,
Serkan Piantino, and Yann LeCun. Fast convolutional nets with fbfft:
A gpu performance evaluation. International Conference on Learn-
ing Representations, 2015.

1github.com/THighlander


