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Abstract

We propose a sparse coding based framework for top-down salient object detection
in which three locality constraints are integrated. First is the spatial or contextual lo-
cality constraint in which features from adjacent regions have similar code, second is
the feature-domain locality constraint in which similar features have similar code, and
third is the category-domain locality constraint in which features are coded using similar
atoms from each partition of the dictionary, where each partition corresponds to an object
category. This faster coding strategy produces better saliency maps compared to conven-
tional sparse coding. Proposed codes are max-pooled over a spatial neighborhood for
saliency estimation. In spite of its simplicity, the proposed top-down saliency achieves
state-of-the-art results at patch-level on two challenging datasets-Graz-02 and PASCAL
VOC-07. A novel Gaussian-weighted interpolation further improves pixel-level saliency
map derived from the patch-level map.

1 Introduction

Identifying the salient regions within an image has attracted a great deal of interest in the
computer vision community in the past decade for a diverse range of applications ranging
from image classification [16, 17] to image segmentation [6]. In general, saliency estimation
methods can be grouped into either unsupervised bottom-up works or fully supervised top-
down approaches. In bottom-up approaches, low-level visual cues like color, contrast and
uniqueness of the features are used to estimate the salient regions. On the contrary, top-
down approaches are goal-oriented, enabling them to utilize prior knowledge about the task
for better saliency estimation. Following [11, 19], the specific goal of top-down saliency in
this work is to identify image regions that belong to a pre-defined object category, indicated
by a probabilistic saliency map that peaks at object locations.

Top-down saliency estimation models perform well even in the presence of cluttered
background and partial occlusion [4, 11, 19]. Knowledge about salient objects learned
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 1: Illustration of proposed saliency model on challenging test images from PASCAL
VOC-07 and Graz-02 datasets (best viewed in color). (a, e) input image, (b, f) Saliency maps
of Yang and Yang [19], (c, g) Kocak et al. [11] and (d, h) the proposed method.

through supervised training enables these models to distinguish object patches from neigh-
boring clutter. Recent works on top-down saliency use machine learning tools like condi-
tional random field (CRF), dictionary learning and sparse coding (SC) [10, 11, 19]. Sparse
codes of image features are also used in other applications like image classification [5, 20],
object detection [15] and image matting [8]. Locality-constrained linear coding (LLC) [18],
which replaces sparsity constraint with locality constraint in the feature domain, improves
the speed of feature coding considerably. While sparse codes guarantee minimum recon-
struction error, LLC ensures that similar features are coded similarly by limiting the coding
of each feature to its nearest neighbor atoms in the dictionary. Sparse codes often fail to
maintain the locality of features while LLC codes fail to ensure minimum reconstruction
error for the feature. Both sparse coding and LLC coding do not consider contextual infor-
mation in the neighborhood due to which features in spatially adjacent smooth regions are
coded differently.

In the case of classification, it has been suggested [7] that using a discriminative dictio-
nary in which features common to various classes are removed through supervised learning,
results in increased accuracy with fewer number of dictionary atoms. However, removing
common features limits performance in object localization, fine-grained image classifica-
tion and in top-down saliency estimation [5]. In this paper, we propose a coding scheme
that overcomes the above mentioned drawbacks of SC and LLC coding. The paper has two
major contributions: (i) we propose locality-constrained contextual sparse coding (LCCSC)
for a feature in which three forms of locality constraints are imposed on the code–category
locality in which k-nearest neighbor atoms of a feature are chosen from sub-dictionaries
of each category, spatial locality in which context is incorporated by selecting the nearest
neighbor atoms for spatially nearby features and finally, feature locality as in [18]; (ii) we
modify the contextual max-pooling of [22] by pooling the locality-constrained contextual
sparse codes instead of category-specific LLC codes (note that context in LCCSC refers to
the context arising from the spatial locality constraint and not to the contextual max-pooling
operation). The advantages of the proposed method are (i) unlike [11, 19, 22], the sparse
codes for different saliency models (classes) are not recomputed since the dictionary is com-
mon for all categories and (ii) faster computation time since there is no iterative dictionary
learning as in [11, 19]. We also propose a Gaussian-weighted interpolation step to gener-
ate pixel-level saliency maps from patch-level maps. These contributions result in improved
top-down saliency maps on Graz-02 [14] and Pascal VOC-07 datasets [3].
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Fig. 1 shows three images from PASCAL VOC -07 dataset (boat, motorbike and horse)
and one from person category of Graz-02 dataset along with their corresponding saliency
maps. Our boat model assigned boat pixels with highest saliency values (fig. 1 (d)), while
boat models of state-of-the-art top-down saliency approaches [11, 19] fail (fig. 1 (b, c)) due
to cluttered background. Similarly, our person model could separate two persons (fig. 1 (h))
in the person image of Graz-02 dataset (fig. 1 (e)) while [11, 19] (fig. 1(f, g)) failed to do so.
Motorbike was successfully assigned highest saliency values by proposed motorbike model
(fig. 1 (d)) even though the image contains person, car and bus categories. Similarly, the
proposed horse model produces a better saliency map (fig. 1 (h)) as compared to others.

2 Related Work

There are only a few top-down saliency approaches in the literature, which is dominated
by bottom-up saliency methods. In general, top-down saliency models are learning-based
approaches requiring a set of training images. In [4], a saliency model is learnt using dis-
criminant features from a pre-defined filterbank (e.g DCT). Mutual information is used to
compute the saliency of an image. Since salient features are selected based on image-level
statistics, it fails to suppress background patches resulting in poor performance in the pres-
ence of cluttered background. Independent component analysis (ICA) along with spatial
priors is used in [9] to replace the pre-defined filter bank of [4]. Its accuracy reduces consid-
erably if the target appears at a location different from its location prior. Yang and Yang [19]
proposed joint learning of CRF parameters and a category-specific dictionary. Sparse codes
of SIFT features are used as latent parameters to learn the dictionary. Even after several
iterations of joint dictionary learning, this method cannot suppress background patches that
are visually similar to the object. To improve the pixel-level accuracy of this approach, Khan
and Tappen [10] proposed a discriminative dictionary learning with spatial priors. Kocak
et al. [11] further improved the pixel-level accuracy using superpixel-based features instead
of image patches. Superpixel-based computations, use of color-based features and object-
ness [2], makes this approach computationally less efficient. The proposed framework is
closely related to contextual pooling proposed in [22]. They use LLC coding of SIFT fea-
tures on category specific dictionaries followed by contextual max-pooling and logistic re-
gression. On a test image, the LLC codes need to be recomputed to estimate the saliency
map for each object category. In the proposed framework, a novel LCCSC coding is used
instead of LLC coding, wherein the sparse codes need not be computed since the dictionary
does not change with object category. Moreover, when LCCSC is used in conjunction with
the proposed Gaussian weighted interpolation from patch-level to pixel-level saliencies, we
achieve more accurate saliency maps compared to [22].

Conventional object localization approaches aim to find a rectangular bounding box
around the object while object segmentation approaches associate each pixel to object or
background. On the other hand, approaches like [1, 13] generate an object estimate similar
to that of a probabilistic top-down saliency saliency map. Compared to the proposed frame-
work, [13] needs additional information about the training images indicating whether it is
truncated or difficult and [1] needs a much larger code-book (500,000 atoms) compared to
512 atoms per category in our approach. Similiar to a recent top-down saliency paper [11],
our results are compared with these approaches.
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Figure 2: Training and testing of the proposed top-down saliency approach.

3 System overview
Fig. 2 shows the pipeline of the proposed method which is similar to the widely used sparse
coded spatial pyramid matching (ScSPM) image classifier, i.e., feature extraction, feature
coding, pooling and feature classifier. To reduce computations, dense SIFT features are ex-
tracted using only a single patch size. A novel locality-constrained contextual sparse coding
strategy is proposed for feature coding. Spatial neighborhood of a patch is divided into
a regular grid and the codes in each cell of the grid are max-pooled individually. These
max-pooled vectors are vertically concatenated to form a context max-pooled vector repre-
senting the patch. Logistic regression-based feature classifier is learnt using these context
max-pooled vectors. For saliency inference on a test image, the class-conditional probability
of context max-pooled vectors are estimated from the learnt logistic regression model. This
probability is the saliency value of a patch in the image. The pixel-level saliency map is
obtained using a novel Gaussian-weighted interpolation of the patch-level saliency map.

4 Locality-constrained contextual sparse coding (LCCSC)

4.1 Formulation
Various coding schemes aim for specific objectives like sparsity [12], feature-domain local-
ity [18] and spatial-domain locality [10, 21]. Here, all these desired properties are integrated
into a single objective function. Also, feature coding using a discriminative dictionary is not
the goal in top-down saliency; rather feature codes should be agnostic to object categories
as long as the features contribute to locating the salient object (this will be elaborated soon).
LCCSC ensures that features representative of salient regions are not ignored even if they
are not discriminative.

Given a feature vector f and dictionary D with elements D = [d1,d2, .,dn], LCCSC cod-
ing searches for the codeword z that satisfies the following criteria:

argmin
z
‖ f −Dz‖2 +λ1 ‖z‖1 + λ2 ‖z�hπ‖2 + λ3

c

∑
j=1

(|
‖z‖0

c
−
∥∥z� col j[ρ]

∥∥
0 |); (1)

where c is the number of object categories, col j[ρ] is the jth column of a binary ma-
trix ρ (to be described later) and � is element-wise multiplication. The first two terms are
the conventional sparse coding of feature f with l1 constraint [12]. The third term imposes
locality constraint in the feature domain as well as in the spatial domain. It is motivated
from LLC [18] in which the feature domain locality constraint is denoted by ||z�h||2, where
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h = exp( dist( f ,D)
σ

) and dist( f ,D) is a vector representation of the Euclidean distance be-
tween feature f and each atom (dictionary entry) of D. σ adjusts the rate of decay of the
locality weight. In our formulation, the difference from [18] is in ensuring spatial-domain
locality constraint also by considering not only a single feature f , but a set of features
fN :N = 1, ... ,N in the spatial neighbourhood of f . The context in LCCSC refers to the
spatial neighborhood. Each vector fi in fN will have a corresponding vector hi, which
is a function of its Euclidean distance to the dictionary atoms. The minimum of this dis-
tance for all vectors in fN constitutes hπ in eq. (1). i.e, nth element of hπ is the minimum

lowest

Figure 3: Illustration of computation of hπ .

distance to the nth atom in the dic-
tionary among fN which is com-
puted by hπ(n)= hi(n), i f hi(n)≤
h j(n) ∀ j ∈ N as illustrated in
fig. 3. Thus, hπ ensures that the
third term draws lower penalty
when the non-zero terms in the
code z corresponds to the dictio-
nary atoms for which the distance from the feature or its neighbors is minimum.

As stated earlier, in top-down saliency, we are interested in how useful a feature is in
identifying the salient object rather than in its discriminative ability. For example, a wheel
which is common to the two classes of motorbike and car may not appear in a discriminative
dictionary learnt for image classification [5]. If the dictionary is formed by unsupervised
k-means clustering of features from all categories [20], atoms corresponding to wheel may
be an averaged version of motorbike and car wheels due to the possibility of both types
of wheels falling into the same cluster. Both these scenarios are not suitable for top-down
saliency. In top-down saliency since the goal is to assign a probability to a feature f based
on its representativeness in each category, its code z should be such that the number of atoms
that contribute to the non-zero values of z are distributed among all object categories. Based
on the association of the feature to each class their values can differ. This corresponds to
||z||0/c in the fourth term of eq. (1). The underlying assumption is that the dictionary is
partitioned so that there is the same number of atoms from each category in a partition (see
fig. 4). In a practical situation an equal distribution of z values ( ||z||0/c) is desired but not
always possible and thus, the third term penalizes any deviation from the desired case. To
this end, we define a binary matrix ρ of size n× c (n is the number of dictionary atoms)
whose element ρi j is set to 1 if the ith atom in the dictionary belongs to the jth category.
Now, consider two cases–one in which a code has two non-zero elements, both of which
correspond to the same category (e.g., the first two elements are non-zero) and the other
in which the two non-zero elements correspond to different categories. The penalty for
deviation from desired as represented by the fourth term term in eq. (1) is higher in the
former case, as desired. This illustrates the third aspect of locality, viz., category-specific
locality, where atoms local to each object category participate in the sparse coding process
as shown by the filled circles of O1, O2 and O3 in fig. 4.

4.2 Approximate solution
A closed-form solution of eq. (1) is clearly not possible. Our approach is to ensure that the
dictionary used in the sparse coding process satisfies the three locality constraints–feature
domain, spatial domain (context) and category domain as formulated in the third and fourth
terms of the objective function. The dictionary formation and subsequent sparse coding is
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Figure 4: Illustration of approximate solution for locality-constrained contextual sparse cod-
ing for a feature f . Here fi indicates a neighboring patch (best viewed in color).

shown in fig. 4. As noted in the previous section, an initial dictionary is formed by concate-
nating separate sub-dictionaries formed by k-means clustering of SIFT features from each
category. In fig. 4, O1, O2 and O3 are three such sub-dictionaries that make up the dictio-
nary D. Category domain locality along with feature domain locality is enforced by picking
k-nearest neighbors of a feature f from each sub-dictionary Oi using hierarchical k-nearest
neighbor search. Next the spatial locality or contextual constraint involves consideration of
the set of features fN in the spatial neighbourhood of f and imposing category domain lo-
cality on each element of fN ; this results in another set of atoms picked from D. fN is made
up of patches that overlap the patch containing f . These patches constitute the context for
LCCSC.

Having picked atoms from D based on the three aspects of locality constraints, they
form a smaller locality constrained contextual dictionary D f , which is used to encode fea-
ture f (fig. 4) into z f for minimizing the first two terms in eq. (1) through the feature-sign
solver [12] with λ1 = 0.15. The final sparse code z is formed by placing values in z f in their
respective positions in a vector z initialized to 0. This is to ensure that the vectors passed on
for subsequent max-pooling and logistic regression are of the same size irrespective of the
number of atoms that are picked to form D f .
Computational complexity: Let no be the number of atoms per category and n be the
number of atoms in dictionary D. Let n f be the size of D f and q f be the number of non-
zero terms in the final sparse code z. Traditional sparse coding on D using feature-sign
solver has a computational complexity of O(nr) +O(nq). Here q is the number of non-
zero terms in the code and r is the length of a dictionary atom (r = 128). LLC reduces
these computations to O(n+ k2) for k-nearest neighbors (typically k = 5). Computational
complexity of our approach is in between those of sparse coding and LLC. Hierarchical k-
nearest neighbor computations on each category dictionary separately results in O(no) per
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category. These k-nearest neighbor computations for each category can be implemented in
parallel to achieve multifold speed-up compared to nearest neighbor computations on D in
LLC which has a complexity of o(n). Feature-sign solver requires additional computations
of O(n f r)+O(n f q f ). So, in a parallel implementation, the computational complexity of pro-
posed LCCSC can be reduced to O(no)+O(n f r)+O(n f q f ). Due to the inherent parallelism
in the framework, and much smaller size of feature-specific dictionary D f as compared to the
full dictionary D, a parallel implementation of the proposed LCCSC is faster than a parallel
implementation of conventional feature-sign solver.

5 Contextual max-pooling for top-down saliency
estimation

Context has an important role in deciding whether an image patch belongs to a particular ob-
ject [22]. Contextual max-pooling refers to the representation of each patch by a max-pooled
vector computed over its spatial neighborhood. The contextual max-pooling is done for
LCCSC code vectors. The contextual neighborhood scale for max-pooling is empirically set
to 6. i.e., 6 patches surrounding the current patch in each direction are considered for max-
pooling. To preserve the spatial layout, feature codes of these 169 ((2×6+1)× (2×6+1))
patches in the context are equally divided into a 3×3 spatial grid [22]. Separate max-pooling
on each of these 9 regions followed by vertical concatenation of these max-pooled vectors
forms the contextual max-pooled vector which represents the patch containing feature f .
Contextual max-pooled vectors from object patches and from an equal number of negative
patches are collected from all training images and a logistic regression is learnt for each
object. These logistic regression models are the top-down saliency models for the object,
and are used to estimate the saliency map. The proposed saliency inference on a test im-
age is simple and fast. SIFT feature extraction followed by locality-constrained contextual
sparse coding, contextual max-pooling and prediction of class conditional probability by lo-
gistic regression gives the saliency for a patch. Pixel-level saliency maps are computed from
patch-level saliency values through our Gaussian-weighted interpolation.

6 Gaussian-weighted interpolation for pixel-level saliency
map generation

We propose a simple Gaussian-weighted approach to compute pixel-level saliency from
patch-level saliency. Upsampling by bicubic interpolation used by Yang & Yang [19] reduces
the pixel-level precision rates at EER by 10% compared to its patch-level accuracy [10]. In
order to estimate the saliency value at a given pixel, we consider those patches that contain
that pixel. Let [p(1), p(2), .... p(m)] be the saliency values for m image patches having
centers at locations (x1,y1),(x2,y2), ....,(xm,ym). Let g be the grid spacing i.e., the dis-
tance between adjacent patches. Since B is the width of the image patch, all image patches
whose centers are located within B

2 radius from (xl ,yl) contain the pixel at (xl ,yl). Let

Ω = [p1, p2, ....p j] be the patches containing (xl ,yl) and G(xl ,yl ,xi,yi) = exp
− (xi−xl )

2+(yi−yl )
2

2g2

be the Gaussian weight of patch i having center at (xi,yi) on this pixel. The saliency value at
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5: Illustration of Gaussian-weighted interpolation (best viewed in color). (a, e) Input
image, (b, f) bicubic interpolation, (c, g) proposed Gaussian-weighted interpolation and (d,
h) ground truth. White indicates true positive pixels, black true negatives, and red indicates
false positves and false negatives.

(xl ,yl) is computed as

p(xl ,yl) =
∑i ε Ω p(i)G(xl ,yl ,xi,yi)

∑i ε Ω G(xl ,yl ,xi,yi)
. (2)

Fig. 5 shows car and bike input images. From the same patch-level saliency values gen-
erated by proposed method, pixel level saliency maps are generated by bicubic interpolation
and proposed Gaussian weighted interpolation. The saliency maps generated in both cases
are binarized using a common threshold and misclassified pixels are shown in red (false pos-
itive+false negative). The proposed interpolation step results in better pixel-level saliency
map with lesser false detections (fig. 5(c, g)) compared to bicubic interpolation used by
[19] (fig. 5(b, f)) which spreads to the background pixels.

7 Experimental Results
We test our method on two challenging datasets - Graz-02 and PASCAL VOC-07. The same
parameters are maintained in both datasets. For fair comparison, the same experimental set-
up as [19] is followed, i.e., dense SIFT features are extracted from 64× 64 image patches
with a grid spacing of 16 pixels. For each object category, a sub-dictionary of 512 atoms is
formed through k-means clustering of features extracted from positive training patches. A
patch is considered as positive if at least 25% of the pixels belong to the object category.

7.1 Graz-02 dataset
Graz-02 dataset has 3 object categories (bicycle, car and person) and a background category.
As in [11, 19], from each category, 150 odd numbered images are used for training and
remaining 150 for testing. Saliency models for each object category are tested on 300 test
images (150 test images of the object and 150 background test images) and precision rate at
Equal Error Rate (EER) is determined.

Table 1(a) compares the patch-level results of our method with other top-down saliency
models. The proposed method is called as LCCSC-pooled, where pooled indicates contex-
tual max pooling of the code. LLC-pooled and SC-pooled refers to our framework except that
LCCSC is replaced by LLC and SC respectively. DSD and SUN results are reported in [19].
In all the 3 classes we achieve state-of-the-art results. As illustrated in fig. 6, when LCCSC
in the proposed framework is replaced by LLC (LLC-pooled) or SC (SC-pooled), the per-
formance deteriorates, most notably in the car category because of background features that
are similar to car features. Since LLC and SC do not consider context while coding, these
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Table 1: Precision rates (%) at EER on Graz-02. (a) Patch level results and (b) pixel level
results.

(a) Patch-level
Bicycle Car Person Mean

DSD [4] 62.5 37.6 48.2 49.43

SUN [9] 61.9 45.7 52.2 53.27

Yang and Yang [19] 80.1 68.6 72.4 73.7

LLC-pooled 81.91 71.3 70.9 74.71

SC-pooled 83.15 72.81 72.06 76.01

LCCSC-pooled 83.46 75.97 73.13 77.52

(b) Pixel-level
Bicycle Car Person Mean

Objectness [2] 53.5 48.3 43.5 48.43
Aldavert et al. [1] 71.9 64.9 58.6 65.13
Khan and Tappen [10] 72.1 - - -
Marszalek and Schmid [13] 61.8 53.8 44.1 53.23
Yang and Yang [19] 62.1 60.0 62.0 61.46
Kocak et al. [11] 73.9 68.4 68.2 70.16

LCCSC-pooled
(upsampling of [19]) 73.41 68.6 61.25 67.75

LCCSC-pooled (Gaussian-
weighted interpolation) 76.19 71.2 64.13 70.49

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 6: Comparison of saliency maps generated using LCCSC against LLC and SC cod-
ing. (a, e) input images, (b, f) LLC-pooling, (c, g) SC-pooling and (d, h) LCCSC-pooling.

features resulted in false detection in this category (fig. 6(f, g)). The smooth regions within
the person are not detected by LLC and SC (fig. 6(b, c)), but using context along with the
other two locality constraints in LCCSC helped generate better saliency maps (fig. 6(d, h)).
For fair comparison, LLC-pooled and SC-pooled are implemented on a dictionary of 2048
atoms formed by k-means clustering. Matlab simulations using parallel processing toolbox
shows that LCCSC achieved 27% speed-up compared to conventional feature-sign based
sparse coding on D (0.54 sec for LCCSC versus 0.74 sec for SC to encode 1000 features).

Table 1(b) compares pixel-level results of the proposed model with recent top-down
saliency approaches, a bottom-up approach [2], and with two results in object segmenta-
tion [1, 13]. Even-though the saliency values are estimated at patch level, the Gaussian
weighted interpolation yields the best reported results at pixel-level, which is better than
models that estimate saliency directly at pixel-level [11]. The seventh row shows the EER
of pixel-level saliency map using upsampling of [19] and the last row shows the results for
Gaussian-weighted interpolation. The improvement by about 3% indicates the benefits of
the proposed interpolation scheme. It is to be noted that we achieve this performance by
using simpler feature coding and contextual max-pooling in comparison with computation-
ally complex dictionary learning and graph based approaches of [11, 19]. Since conditional
random field (CRF) used in these models are built on sparse codes, increasing the dictionary
size will drastically increase the computational complexity by many times which is practi-
cally not feasible. Contextual max-pooling of LLC codes [18] are used by [22] to generate
the saliency map. They use separate dictionaries of 1024 atoms for each category as opposed
to a common dictionary for all categories. Instead of precision at EER, they report average
precision at pixel-level. Our mean average precision is 75.5 (bike- 83.1, cars-75.7, person-
68.3) which is much higher compared to their 62.1 (bike-69.1, cars-58.0, person-59.2).

7.2 PASCAL VOC-07

PASCAL VOC-07 is a challenging dataset having 20 different object categories with multiple
objects in some images. As in [19], all models are evaluated on the entire 210 segmentation

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 
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Table 2: Patch-level Classification rates at EER on PASCAL VOC-07
Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

Yang and Yang [19] 15.2 39 9.4 5.7 3.4 22.0 30.5 15.8 5.7 8.0
Proposed 13.3 33.2 22.1 11.2 8.6 33.5 37.2 14.3 3.9 22.3

Dining table Dog Horse Motor bike Person Potted plant Sheep Sofa Train
T.V
Monitor Mean

Yang and Yang [19] 11.1 12.8 10.9 23.7 42.0 2 20.2 10.4 24.7 10.5 16.15
Proposed 23.0 14.9 25.0 30.6 38.9 16.4 36.3 18.3 29.2 36.3 23.4

Cars Person Bicycle Sheep Sofa Cat Train TV monitor
Figure 7: Top row: Input images from Graz-02 and PASCAL VOC-07 datasets. Bottom
row: Our LCCSC-pooled results.

test images irrespective of the presence or absence of target. We outperform [19] in 15 out
of 20 classes as shown in table 2. On averaging across all classes, in patch-level, we achieve
a mean precision rate at EER of 23.4% which is better than 16.15% of [19]. With the help
of proposed Gaussian weighted interpolation, we achieve a mean precision rate at EER of
17.65% in pixel-level. Khan and Tappen [10] report precision of 8.5% only for cow category
for which our method gives 22.66%. We do not compare with [11] since they manually
assign an all zero saliency map, if the object of interest is not present in the test image.

Fig. 7 shows qualitative results on challenging test images from Graz-02 (Cars, Person
and Bike) and PASCAL VOC-07 (Sheep, Sofa, Cat, Train and TV monitor) datasets. Pro-
posed method could perform well even on a rotated image (Person). The sofa was correctly
detected even though the image is dominated by bicycle which is another category in the
dataset. Similarly, cat is assigned with higher saliency, in spite of the presence of dog (an-
other category) in the image. TV monitor is correctly identified in spite of the presence of
visually similar structures within the image.

To compare with pixel classification accuracy of [1], our pixel-level saliency maps are
threshold at 0.5, so that pixels having a saliency value above 0.5 is treated as belonging to
that object category otherwise background category. A pixel is assigned to the class having
highest saliency value in the cases where more than one category produces saliency value
above threshold. This simple thesholding of saliency map gives an average pixel classi-
fication accuracy of 32.33% which is far superior as compared to 23% of dedicated class
segmentation approach [1].

8 Conclusion

In this paper we propose a simple and highly efficient feature coding strategy specifically
for top-down saliency estimation. The proposed Gaussian-weighted interpolation produces
better pixel-level saliency map from patch-level saliency values. We plan to improve our
top-down model by combining with bottom-up saliency approaches such as objectness [2].
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