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Abstract

Adaptive support weights and over-parameterized disparity estimation truly improve
the accuracy of stereo matching by enabling window-based similarity measures to handle
depth discontinuities and non-fronto-parallel surfaces more effectively. Nevertheless, a
disparity map sequence obtained in a frame-by-frame manner still tends to be inconsis-
tent even with the use of state-of-the-art stereo matching methods. To solve this incon-
sistency problem, we propose a window-based spatiotemporal stereo matching method.
We exploit the 3D disparity profile, which represents the disparities and window normals
over multiple frames, and incorporate it into the PatchMatch Belief Propagation (PMBP)
framework. Here, to make the 3D disparity profile more reliable, we also present the op-
tical flow transfer method. Experimental results show the proposed method yields more
consistent disparity map sequences than does the original PMBP-based method.

1 Introduction

Stereo matching is to identify correspondences between images captured at different view-
points. In stereo matching, similarity measures between pixels are essential. They can be
roughly classified into pixel- and window-based measures. The pixel-based measure uses
information from a single pixel and thus is very fast and efficient. However, it has low
discriminative power and is vulnerable to noise. By contrast, the window-based measure
uses information from multiple pixels in the window and offers more discriminative power.
In addition, it is more robust against noise than is the pixel-based measure. However, the
window-based measures commonly assume fronto-parallel scene surfaces and, therefore,
yield a fattening artifact at depth discontinuities and non-fronto-parallel surfaces. For this
reason, many methods have been proposed to overcome the limitations of window-based
similarity measures. For example, adaptive support weights [20] and over-parameterized
disparity estimation [2] truly improve the accuracy of stereo matching by allowing window-
based similarity measures to handle depth discontinuities and non-fronto-parallel surfaces
more effectively. Actually, some recent methods that employ adaptive support weights and
the over-parameterized disparity estimation with a smoothness constraint have produced high
quality disparity maps [1, 6, 18].

Nevertheless, when handling stereo image sequences, a disparity map sequence obtained
in a frame-by-frame manner remains inconsistent even with the use of state-of-the-art stereo
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(a) Frame 11/12/13 with Gaussian noise (¢ = 5) (b) Ground truth
(c) Results of PMBP [1] (d) Results of PMBP-3D

Figure 1: Stereo matching results for the temple dataset

matching methods. Figure 1(c) shows a disparity map sequence containing a considerable
fluctuation artifact in a static background. This fluctuation artifact is also problematic in
dynamic regions. Even when scene objects and cameras move smoothly, considerable tem-
poral disparity variation can be generated because of noise and illumination changes between
frames.

To solve this inconsistency problem, we propose a window-based spatiotemporal stereo
matching method exploiting a 3D disparity profile in a PatchMatch Belief Propagation (PMBP)
framework. The 3D disparity profile is a structure that represents disparities and normal vec-
tors of a window over multiple frames. We assume that the elements of a 3D disparity profile
vary smoothly with time to produce a consistent disparity map. Our main contribution is a
method that produces smooth variations of the 3D profile elements and a means to use the 3D
disparity profile for the PMBP framework. Experimental results show the proposed method
yields more consistent disparity map sequences than does the original PMBP-based method

[1].

1.1 Related works

In general, spatiotemporal stereo matching uses multiple frames to obtain a disparity map
of the frame of interest. It usually assumes that disparity maps are similar in consecutive
frames and aggregates matching costs from neighboring frames [4, 7, 13] or propagates
penalty costs to nearby frames [10]. Davis et al. [4] proposed a spatiotemporal framework
using a 3D window to aggregate pixel-based costs from neighboring frames. Afterwards, this
framework was improved to aggregate pixel-based costs with adaptive support weights. To
increase the efficiency for computing adaptive support weights, Richardt e al. [13] extended
a bilateral grid, and Hosni et al. [7] used a guided-filter. Khoshabeh et al. [10] proposed a
post-processing method based on total variation regularization for consistent disparity maps.
However, although these methods prove that the spatiotemporal stereo matching approach
improves the consistency of consecutive disparity maps, they do not properly manage dis-
parity variation between frames caused by camera and scene motion.

Two approaches exist for handling disparity variation: blocking undesirable temporal
supports [12, 14] and explicitly modeling the variation [8, 15, 19, 22]. Larsen et al. [12]
proposed a temporal belief propagation based on the spatiotemporal Markov random field
having disconnected edges, in which adjacent vertices pass inconsistent messages. Sanchez-
Riera er al. [14] presented a robust temporal normalized cross correlation (NCC) that only
approves temporal supports when corresponding pixels at consecutive frames have similar
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NCC values. However, these methods still do not guarantee consistent disparity maps be-
cause they have been designed just to avoid problems resulting from disparity variation, not
to produce consistent results.

As the second approach, scene flow estimation methods have been proposed. These
compute both stereo and motion from two consecutive frame pairs. Huguet and Devernay
[8] modeled an energy function for the scene flow and solved it within a variational frame-
work. Vogel et al. [19] proposed a super-pixel based scene flow method in which each
super-pixel is regarded as a scene plane. However, these methods are not only computation-
ally expensive, but also consistency is induced between only two frames. On the other hand,
Zhang et al. [22] modeled a spatiotemporal similarity measure using a disparity and the gra-
dient of a disparity function. Shin and Yoon [15] improved this model by applying adaptive
support weight that is based on the variant of a guided filter. However, these two methods
[15, 22] cannot properly handle image motion between frames. Sizintsev and Wildes [16, 17]
proposed spatiotemporal orientation based similarity measures. Because these measures are
defined with consecutive frames, they can yield temporally consistent disparity maps. How-
ever, similarity measures do not work well under large displacements because of the motion
of a camera and objects, as an oriented filter cannot provide meaningful responses in this
case.

Recently, Hung et al. [9] proposed a method that employs a structure containing dis-
parity values of a point of interest in support frames. They called the structure a disparity
profile. Although the proposed method is inspired by this method, remarkable differences
exist between the two methods. We extend the disparity profile to utilize window-based sim-
ilarity measures according to the over-parameterized disparity. In addition, we propose a
new PMBP-based framework using the extended profile for computing consistent disparity
map sequences. Furthermore, we propose an optical flow transfer method for establishing
more reliable disparity profile by using optical flows of both views.

2 Proposed method

2.1 Opver-parameterized disparity representation

A disparity is usually defined as a scalar value. However, it can also be defined by an over-
parameterized form having additional information besides a disparity. For an image point
p= [ I}T, we can define a plane in the disparity space by a disparity value z,, and a

d_[.d ,d ,d 1" d d d
normal ny, = [nx_’p n, nz,p] as ny ,x +nj , D

the plane equation, we can compute a disparity value z, for any point q = [x, y, 1]T on the
disparity plane as,

y+ ”?,pz My pXp — nipyp - n?,,,z,, =0. With

2g = ~MxzpXq = Myz,pYq + (MxzpXp +Myz pYp +2p) (1
where n,, = n?/ nf and ny, = n;' / nf . By Eq.(1), the over-parameterized disparity representa-
tion based on z,, and nﬁ of point p can define the disparity value of points on the window.

Suppose that the corresponding point ¢’ in the target image for q in the reference image
is defined as ' =q—[z4 0 O}T. We can then express the relationship between two points by
a linear transformation as

b ngep Myep =g pXp —yzpYp —2p
q = 0 1 0 q. ()
0 0 1
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As a different perspective, if we regard a window as the projection of a scene plane in the
world, the linear transformation in Eq.(2) can be explained by a plane-induced homography.
For a rectified camera setup, Eq.(2) is rewritten by the plane-induced homography as

bn; bn; bn;
qd=|(1-k51 0 0o o0 |K!]q, 3)
0O 0 0

where K is an intrinsic matrix composed of focal lengths f; and f,, subscripts x and y rep-

resent x and y directions. n® = [n; ny n;] " is the normal of a scene plane. b is a baseline
between cameras, and d is a distance from the scene plane to the origin that is set to be the
location of the reference camera. Specifically, d is defined as d = —nfcxfn — ni,yf, — niz;, where
[x3, ¥, 23] is the point on the scene plane corresponding to the center point of a window.
From Eq.(2) and Eq.(3), we can realize that the location and normal of a scene plane in
the world are related to the location and shape of a corresponding window in the target image

asl

s

L fb bn o bn e

p = ’ XZ,p Yo.p T T
; nyx, +myy 1z, fy

“

= S 1S S)S S 0
Zp WX 1Y) + 122,

2.2 3D disparity profile

For a point in a frame of interest, if we know the temporal correspondences of the point
at support frames, we can collect disparities of the correspondences and normal values of
a window over multiple frames. We define a structure concatenating these disparities and
normal values in support frames as a 3D disparity profile.

As shown in Eq.(4), a scene plane motion is related to the location and shape variations
of a corresponding window. For example, if a fronto-parallel scene plane moves away from
the reference camera by increasing z,,, then the corresponding window of the target image
should be square, and located with decreasing disparity. If a scene plane normal is changed,
then the shape of a corresponding window should be changed as well. Hence, we can exploit
the characteristics of a scene plane motion to find the proper window location and shape
in image frames. In general, objects and cameras in a scene can be assumed to move with
smooth variations in direction and velocity. In this case, the scene plane normal and location
are smoothly changed, and the window shape and location must also be changed smoothly.
Based on this assumption, we generate an improved disparity profile, and use it to obtain
consistent disparity maps.

2.3 Energy modeling

To compute consistent disparity maps for a rectified stereo image sequence, we employ an
energy minimization scheme for each frame. Our energy function is defined by an over-
. . . T . . . ~ ~ ~ ~ 17T

parameterized disparity h = [z n.;n,;] and a guidance disparity h = [Z i 7l,;]  as

EMH)= Y Dy(h,)+ ¥ ¥ Vpq(hyhy)+ X Tp(hy,,h),), 5)
pEP PEPGEN, peP

'Equations (2) and (3) are only used to show the relationship between the window and scene plane. Hence, the
focal length and baseline are not required to perform our method.
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where P is a set of pixels in the reference image, and N, represents four connected neighbor-
hoods of p. D), is the data cost representing how given disparity and normal values are well
fitted to reference and target images, I/ and I'“’. It is defined as

Dp(hp) = qu qu'C(C]ahp)a (6)

W,

where W, is a window centered at pixel p. w,, is an adaptive support weight defined as

exp(—
pixel-based cost for the disparity given by Eq.(1). In this paper, we use the combination of
census transform [21] and mutual information [11]. It is defined as

I;e f I(;e f

1/Gc), and |Wp| is a normalization factor defined as Y w,,. C(q,h,) is a

c (C]v hp) = (1 - OC) -min (Ccensus (Qa hp) s Tc) + o -min (Cmutual (CL hp) s Tm)v @)

where ¢ is a parameter for balancing two costs that have different characteristics, and 7,
and 7, are truncation parameters for two costs. Census transform is effective at discrim-
inating correct disparity values at textureless regions, while it is susceptible to noise. By
contrast, mutual information provides robustness against noise, while it is inappropriate to
obtain disparity values in ambiguous regions. Thus, the fused cost can improve accuracy
and robustness by complementing weak points of each cost. In addition, because both costs
are robust to global illumination variation, the fused cost is also robust against illumination
variation.
Vp.q 18 a smoothness cost that encourages a smooth disparity map. It is defined as

Vpq(hp,hy) =B -min (|ne. p - (xp —xg) + 1y p - (vp —yq) + (2p — zq)|+ )
Nxz,q° (xp _xq) Ny q- (Yp _Yq) + (Zp _Zq)| aTV))

where [ is a parameter for weighting the smoothness cost. 7, is a truncation parameter for
preserving depth discontinuities.

T, is a temporal cost that encourages consistent disparity values between frames and is
defined with guidance disparity and normal values, Zp, iy, p and i p, as

Ty(h,,h,) =8, v- [min (|zp —Zp[, %) +min (0 (|xep = fixe,p| + [1yep —Fiyep]) )] '9

©)
Ideally, Z,, iy, p and fiy, , should be ground truth values. However, because ground truth
values are not given, we determine guidance values by exploiting the characteristics of a 3D
disparity profile — smoothly varying disparity and normal values between frames are more
reliable than largely varying disparity and normal values. Hence, we set values that can
make disparity and normal values between consecutive frames smoothly varied as guidance
values. To obtain such guidance values, we compose a disparity profile and fit the profile to
a polynomial function. This procedure will be described in Sec. 2.5. Y is a parameter for
weighting the temporal cost, and p is a parameter for adjusting the influence of a normal
difference compared to a disparity difference. Lastly, 7, and 7, are truncation parameters for
preventing incorrect guidance values from overly affecting the energy function.

2.4 Temporal correspondence establishment

To obtain the 3D disparity profile, we must establish the temporal correspondences across
frames. To this end, we employ the Large Displacement Optical Flow (LDOF) method [3]
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Figure 2: Establishment of temporal correspondences

to handle large displacements by rapidly moving objects or cameras. After forward and
backward optical flows between consecutive frames are obtained, we can find temporal cor-
respondences at distant frames by recursively linking optical flows as in Fig.2(a). By gath-
ering disparity and normal values of temporal correspondences, we can compose a disparity
profile. However, if the obtained flows are incorrect at some frames, the disparity profile
may contain outliers. Hence, we filter out incorrect flows by a forward-backward optical
flow consistency check with the threshold of 1.

However, the consistency check causes the profile to become fragmentary. For example,
in Fig.2(b), the optical flow of the reference view is inconsistent between frame ¢ and ¢ + 1
because of the error at frame ¢ + 1. Hence, temporal correspondences at frames from ¢ + 1
cannot support the pixel of interest at frame #. To handle this problem, the early work [9]
used long-range optical flows to omit erroneous frames and employed optical flows from
frame t tor+1/¢t+2/t+3. Figure 2(b) shows the advantage of this strategy. Because
the yellow-colored flow from frame ¢ to 7 4+ 2 is consistent, correspondences at frames after
t +2 can support the pixel of interest. However, the strategy is not useful when the frame of
interest is frame 7 4 1. In this case, the pixel of interest at frame 7 + 1 cannot use information
from other frames due to the absence of reliable flows by the problem of frame 7 + 1.

To solve this problem, we propose an optical flow transfer that uses the flows of the other
view instead of long-range flows. Given the forward flow from frame ¢ to 7 4 1 and disparity
maps for frame ¢ and 7 4 1 of the target view, we can transfer the flow of pixel p in the target
view to the reference view as

—ref ( tar )

U1\ Xp = Zp s Yp thirl(xpvyzi) + (Zin Znirzﬂ)v erezil( zf;‘{,yp) tir-"-l(xp7y17)7

(10)
where x, and y, are x-y coordinates of pixel p in the target view. u and v are horizontal and
vertical displacements of initial optical flow o. u and v are components of transferred flow
0. z’“’ and z’]ﬁ’ .1 are disparity values of pixel p at frame 7 and p’ at frame ¢ + 1, and p’ is
the temporal correspondence of p. However, the transferred flow could be incorrect because
of erroneous flow and disparity values. Thus, we generate the transferred flow using only
reliable flow and disparity values. In order to confirm the reliability of a disparity, we use
a left-right consistency check as in [6]. Here, we set thresholds for disparity and normal to
1 and 0.3, respectively. In addition, to further remove incorrect transferred flows, we again

check the consistency between 0, zf+1 and 0" +1 . as well as that between Ot‘til and otrif] .-

Finally, we assign flows of om '}y or ot't ", passed by the consistency check to pixels having
inconsistent initial flows. A backward flow is obtained in the same manner.
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2.5 Energy minimization

We obtain the optimal solution to Eq.(5) in the PatchMatch Belief Propagation (PMBP)
framework. PMBP starts with the initialization of particles using random sampling. After-
wards, in each iteration, particles are propagated from neighborhoods ¢ to pixel p and are
then refined. If the disbelief of a candidate state is lower than that of current states of p, the
candidate state is selected as a new member of the particle set of p. After a few iterations,
the particle with the minimum disbelief is selected as the optimal solution of p.

Our propagation step consists of spatial, view, and temporal propagation. Spatial prop-
agation propagates particles from four spatial neighborhoods of pixel p. The propagation
proceeds according to a scan-line order, and already updated particles are only propagated. In
[2], authors composed an over-parameterized disparity as [—ry, ; —nyz 4 Nxz,gXq + NyzgVq + 2]
Because this form encapsulates x, and y,, it does not require any process for spatial propaga-
tion. However, our over-parameterized form uses disparity z, without x, and y,. Thus, if we
propagate our over-parameterized disparity, the disparity to propagate, z,, could be inappro-
priate to the position of p. Therefore, we update the disparity of g before spatial propagation
from pixel g to p as

/ /
= 2gF g g (g —Xp) F1yeq g —Yp) s Mazp =Nazgs  Myzp =Nyzg, an

where z,, n'y; , and 'y, , are entries of the propagated state to pixel p. Next, we conduct
view propagation that propagates particles from the target view. For pixel p in the reference
view, if pixel ¢ in the target view is matched by the state of g, the state is propagated to pixel
p after transforming the state to be appropriate for the reference view as 2/, = —z4, n'x; ) =
—Nyzq, W'yz p = —Ny 4. Finally, we conduct temporal propagation. To this end, we propagate
particles by using guidance values from the 3D disparity profile obtained in the previous
iteration as z'p, = Zp,, n'xz p = fixz p, W'y, p = fyz p. After the propagation step, a random search
around the state of p is performed for state refinement as in [2].

Before the next iteration, we update data with an intermediate disparity map sequence
having the minimum energy in the current iteration. First, we update optical flows. Because
the optical flow transfer uses disparity maps, newly updated disparity maps can improve the
quality of transferred optical flows. Next, we update joint histograms for mutual informa-
tion. Finally, we update guidance values by fitting the disparity profile from the intermediate
disparity map sequence. In Eq.(4), the normal of a window is complicatedly changed by
the location and normal changes of a corresponding scene plane. Thus, even if the scene
plane location and normal are linearly changed, the normal of the window can be changed
non-linearly. In addition, because the location of a scene plane can be changed by non-linear
motion, disparity values in the disparity profile cannot be properly modeled by a linear func-
tion as in [9]. Therefore, we fit disparity and normal values in the profile by a second-order
polynomial function. Objective functions for Z,, i,; , and 7i; , of frame ¢ are defined as

2
r+i 2 : 1
)y Wzapl(a;'l —i—bi,-l—i—c;— ;ji) )

—S<i<$ )
i\ 2 2z n i
i+ Txz Tlxz Mxz 1+ 1+ yz 2 lyz vz t+
Yy wnlﬁ(apY i +b" i+cp—n x,;)) , ) wnp’( +b itcpt — )z’p) ,
—S§<i<§ —§<i<§
12)
I+ it (+i oAt : :
where z,"!, nyl, and n{", are disparity and normal values in the profile, and superscript

t+i represents the frame in which the values are obtained. § is a parameter that defines
the number of support frames. w;,“ is a weight for frame ¢ + i, and it is defined as w",,“ =
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exp(—lil/oy) - rfp“ , where the first term on the right-hand side is a temporal proximity term
that yields higher weights for frames nearer to frame . Note that because normal variation
is more complex than disparity variation, o, for normal is set to a value smaller than that of
o; for disparity. The second term on the right-hand side represents the reliability of disparity
and normal values, and reliability r;,” is determined by using the left-right consistency check.
If the consistency check is passed, we set rJP“ = 1. Otherwise, ri,*" = 0. Parameters of the
polynomial function, a, b and c, are obtained by weighted least squares regression.

After fitting, we update guidance values as Z, = 1/ Co flazp = s fyep = c;l,yz. To in-
crease robustness, we use only guidance values for the temporal cost and temporal propaga-
tion in the next iteration if the sum of weights for disparity is greater than the threshold 7).
If we can use guidance values for the temporal cost, we set 8, of Eq.(9) to 1. Otherwise,
0, =0.

Excepting the first iteration, we proceed with the aforementioned process of PMBP on
both views by turns, and update data for both views. In the first iteration, because dispar-
ity maps do not exist, reliable joint histograms for mutual information cannot be obtained.
Thus, before the first iteration, we compute temporary disparity maps using the census trans-
form cost through the single iteration of PMBP. Similarly, because disparity profiles do not
exist, we do not use the temporal cost and temporal propagation in the first iteration. Be-
cause disparity maps for joint histograms are likely to contain incorrect disparity values if
an input image sequence is noisy, we use the disparity maps only for computing the mutual
information cost.

3 Experimental results

We evaluated our method using a synthetic dataset presented in [13] and a real dataset pro-
vided by KITTI [5]. Parameters of the proposed method were empirically selected as fol-
lows. For the data cost, we used a 21 x 21 window, and set parameters as {C;, @, T., T } =
{30, 0.3,0.4,0.4}. Census transform costs were computed by a 7 x 7 window, and nor-
malized by the size of the transform window. For smoothness and temporal costs, we set
{B,%,7, 7, T, p,S,n} = {0.003,1,0.05,1,1,10,5,3}. In addition, o; for disparity and nor-
mal were set to 10 and 3, respectively. For the PMBP framework, we used three iterations
and a single particle. Optical flows were obtained by the LDOF software provided by au-
thors using basic settings.” For post-processing, we conducted a simple scan-line-based hole
filling method followed by a left-right consistency check.

For a comparison, we selected the original PMBP-based method [1] as a baseline. The
baseline method used the same settings with the proposed method. In this section, the base-
line and proposed methods are referred to as PMBP and PMBP-3D, respectively.

First, we show experimental results for the synthetic dataset. To prove the validity of
the proposed method, we analyzed the accuracy of disparity maps for image sequences with
noise. We generated an image sequence with additive zero mean Gaussian noise, and mea-
sured an average bad-pixel rate of the computed disparity maps for each image sequence.
In the experiments, the tolerance for discriminating bad-pixels was set to 1, and bad pixels
were only checked in non-occluded regions. Table 1 shows average bad-pixel rates for image
sequences with noise levels of 0 and 5. The results for image sequences without noise show
that temporal information can help to improve accuracy for sequences containing ambiguous

ZBasic settings of LDOF are {c,a, 8,7} = {0.8,30,300,5} according to the original paper [3].
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Table 1: Average bad-pixel rate for synthetic datasets

Noise level (o =0) Noise level (o =5)

Book | Street | Tanks | Temple | Tunnel | Book | Street | Tanks | Temple | Tunnel

PMBP 3.34 4.41 4.70 7.48 0.21 17.65 | 12.22 7.35 11.35 2.54
PMBP-3D | 3.08 3.66 4.65 591 0.21 1222 | 8.15 6.50 7.40 1.44

1% 8% 12% 3%
1 PMBP
12% 7 10%
gis% PMBP-3D ,,f' /

Bad pixel rate (%)

Bad pixel rate (%)
Ky

Bad pixel rate (%)
\

Noise level (o) Noise level (o) Noise level (o) Noise level (o) Noise level (o)

(a) Book (b) Street (¢) Tanks (d) Temple (e) Tunnel
Figure 3: Average bad-pixel rates for synthetic data sets according to increasing noise level

regions. The results also show that our method does not yield performance degradation by
employing temporal information. We also notice the accuracy improvement in the results
for image sequences with noise when temporal information is employed. For all datasets,
average bad-pixel rates of PMBP-3D are lower than those of PMBP. To see clearly the con-
sistency improvement, we show average bad-pixel rates according to different noise levels
in Fig.3. As the noise level increases, average bad-pixel rates of PMBP increase faster than
those of PMBP-3D. This means that PMBP-3D can provide more consistent results despite
noise than can PMBP. For a qualitative evaluation, we show the results of femple and tunnel
datasets in Fig.1 and 4, respectively. We can see that PMBP generates inconsistent disparity
maps between consecutive frames for noisy sequences. By contrast, our method provides
more consistent disparity map sequences.

Next, we analyzed the results for a real dataset. Because the real dataset does not pro-
vide ground truth for color image sequences, we performed a qualitative evaluation. Figure
5 illustrates disparity maps for four successive frames. To clearly compare the performance
of PMBP and PMBP-3D, we provide magnified results with contrast adjustment for a spe-
cific area of the disparity map. The specific area is marked with a yellow square in the
disparity map. Because the image captured for a real scene contains ambiguous regions and
inevitable noise, PMBP is likely to provide temporally inconsistent disparity maps. By con-
trast, PMBP-3D generates a consistent disparity map sequence. In addition to the qualitative
evaluation, we quantitatively compared two methods using the KITTI multi-view dataset
consisting of grayscale image sequences with ground truth. To this end, the first 30 se-
quences of training image pairs were used for computing the average bad-pixel rates with
the error threshold of 3. Similar to the experiment with the synthetic dataset, we analyzed
accuracy in according to the existence of additional noise. Without additional noise, PMBP
and PMBP-3D had 5.80% and 5.50% average bad-pixel rates, respectively. With the noise
level of 5, average bad-pixel rates of PMBP and PMBP-3D were 15.46% and 14.59%, re-
spectively. These results represent that temporal information can help to improve disparity
maps for the real dataset.

The run time of PMBP-3D depends on parameters. With the described parameters, the
run time of PMBP-3D increases by 20% compared to PMBP for computing optical flows
and updating data at each iteration.
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(a) Frame 88/89/90 with Gaussian noise (¢ = 5) (b) Ground truth

(c) Results of PMBP [1] (d) Results of PMBP-3D
Figure 4: Results for tunnel dataset

(a) Frame 89/90/91/92

(b) Results of PBMP [1]

(c) Results of PMBP-3D
Figure 5: Results for real dataset. A disparity map sequence is provided in the supplementary
material.

4 Conclusion

In this paper, we presented a new PMBP-based framework using a 3D disparity profile for
computing consistent disparity map sequences. Using the 3D disparity profile, we designed
an energy function including temporal costs, and presented a temporal propagation for the
PMBP framework. In addition, we introduced an optical flow transfer to obtain more reli-
able 3D disparity profiles. Our evaluation proves that the proposed method provides more
accurate and consistent disparity maps than does the original PMBP-based method.
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