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Abstract

This paper presents a novel framework for image super resolution (SR) based on
the multi-task gaussian process (MTGP) regression. The core idea is to treat each pixel
prediction using gaussian process regression as one singletask and cast recovering a high
resolution image patch as a multi-task learning problem. Incontrast to prior gaussian
process regression-based SR approaches, our algorithm induces the inter-task correlation
for considering image structures. We demonstrate the efficiency and effectiveness of the
proposed method by applying it to the classic image dataset and experimental results
show our approach is competitive with even outperforms the related and state-of-the-art
methods.

1 Introduction

Image super resolution (SR) aims at recovering the missing high frequency details from
single image or multiple images. It has been studied over decades and many great methods
are proposed to improve the SR performance gradually. Existing SR methods can be divided
into three categories: interpolation-based, reconstruction-based and example learning-based.

Interpolation-based SR are usually implemented fast but they also suffer from some blur-
ring and not being able to recover real details [2, 3, 12].

Reconstruction-based SR [10, 11, 13, 16] assumed the LR image is generated from HR
image through blurring, down-sampling and noising. Based on this assumption, one pixel in
LR image corresponds to multiple pixels in HR image, so that SR is an ill-posed problem. To
alleviate the ill-posedness, various natural images priorare proposed and incorporated into
the MAP optimization framework. However, its recovery performance drops badly when
upscale factor is large.

Example learning-based SR methods utilize the LR-HR image pair to infer the miss-
ing high-frequency details in the LR image and achieve state-of-the-art performance. [4]
first proposed to infer the HR image patch based external training LR/HR pairs and used
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the Markov Random Fields (MRF) to model the relationships between HR and LR patch-
es, as well as between neighboring HR patches. [15] proposed to learn the HR/LR patch
dictionary simultaneously with assumption that the sparserepresentation of LR patch and
corresponding HR patch are the same with respect to the LR/HRdictionary. With the help of
external dataset, example learning-based SR could recovermore details than interpolation-
and reconstruction-based methods, especially when zooming factor is large. The most sig-
nificant step in example learning-based SR is to learn the relationship between LR-HR image
explicitly or implicitly using the known LR-HR image pairs.These image pairs may be con-
structed from the image internal structures or external large database. Recently, in the field of
example learning-based SR, more and more researchers resort to learn the LR-HR relation-
ship directly, i.e.y= f (x), wherex is the input LR image feature,y is the targeted HR image
and f is the mapping function that transforms the LR feature into HR image. To achieve
the satisfactory SR result, we should find the unique proper mapping function for each test
patch, however, this data-driven method undertakes high computational complexity [7, 8].
To alleviate the computation burden, many methods conduct clustering on training dataset
and assume that patches in the same cluster share the same mapping function [14, 17]. In test
stage, each LR patch first finds the most closest cluster and then uses the corresponding map-
ping function to recover the HR patch. This strategy reducesthe computational complexity
largely. [14] assumef is linear mapping, namely,y= Fx, whereF is the regression matrix.
[14] made use of large scale patch pairs (2.2 million) and cluster them into 4096 clusters. For
each cluster, the desiredF is computed by simple least square regression. Though [14] is
simple to implement and takes short test time, it depends heavily on great number of training
pairs and large number of cluster. There still exist some clusters lacking of enough training
data, making the recovered HR image contain unsatisfactorydetails.

Instead of commonly used parametric models, non-parametric methods [6, 9], especially
gaussian process regression (GPR)-related methods [5, 7, 8] begin to emerge in the SR field.
He and Siu [5] firstly proposed to apply GPR to SR problem and predicted thecenter pixel
using its eight neighbor pixels through GPR without any external database. Unfortunately, it
suffers from long processing time and performance remains to be improved when zooming
factor is over 3. Liet al. [8] proposed to learn multiple local GPR for mapping LR feature
to HR image patch with the help of external database. Two methods, data-driven gaussian
process regression (DDGPR) and prototype-based gaussian process regression (PGPR) are
proposed. DDGPR attempted to learn specific GPR model for each test image patch. DDG-
PR first found nearest neighbors for each LR test patch and used the special LR-HR pairs to
train GPR for this patch. Though achieved the promising performance, it took a long time to
super-resolve an image. Instead of learning unique GPR for each test patch, PGPR assumed
if two patches are similar, they share the same mapping function, so PGPR conducted clus-
tering on training dataset and learnt GPR for each cluster. This method reduced the training
time largely compared to DDGPR, however, at the cost of performance decreasing. Though
some GPR-based SR methods are proposed, main obstacle for application to SR is its high
computational complexity. To overcome the high computational cost, [7] proposed a semi-
local GPR (SLGPR) framework for learn-based image enhancement and applied it to SR.
SLGPR improved the sparse GP through inducing nearest neighbors as specific inducing
inputs for the given test input and this reduced the trainingtime and made it possible for
large-scale GPR.

As for GPR, since it predicts a scalar value based on the observations, it is common to
learn multiple GPR models together to predict an image patch, where each GPR corresponds
to a pixel prediction. However, previous GPR-based SR methods simply learn all the GPR
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Figure 1: Flowchart of proposed Multi-task Gaussian Process Super Resolution.

models independently and ignore the correlation between them. On the other hand, each
pixel prediction can be treated as a task, so that inferring aHR patch can be regarded as a
multi-task problem. To model the correlation between GPR and make the predictive patch
more accurate and natural, we propose a multi-task gaussianprocess framework for image
super resolution (MTGPSR). To the best of our knowledge, it is the first time to apply the
MTGP to the image super resolution problem. The key ingredient of MTGPSR is to take
pixel prediction correlation into consideration and induce inter-task similarity to model this
correlation, so that MTGPSR can be adaptive to image local structures.

The remainder of this paper is organized as follows: we give abrief overview of multi-
task gaussian process prediction proposed in [1] in Section 2; Analysis of how SR problem
corresponds to MTGP and details of proposed algorithm are presented in Section 3; Experi-
mental validation and comparisons are provided in Section 4; Section 5 concludes the whole
paper.

2 Multi-Task Gaussian Process

In this section, we give a brief introduction to multi-task gaussian process prediction model
described in [1]. MTGP tries to solve the following problem: GivenN distinct inputs
x1, ...,xN we define the complete set of responses forM tasks asy = (y11, ...,yN1, ...,y12, ...

,yN2, ...,y1M, ...,yNM)
T , whereyi j is the response for thejth task on theith inputxi . We also

denote theN×M matrixY such thaty = vecY. Given a set of observationsyo, which is a
subset ofy, we wish to predict the unobserved values ofyu of some input points for some
tasks. MTGP wishes to learnM related latent functions{ fl} by placing a GP prior over{ fl}
and directly induce correlations between tasks. Assuming that the GPs have zero mean we
define

〈

fl (x) fk(x
′)
〉

= K f
lkkx(x,x′) (1)

yi j∼N( fl (xi),σ2
j ) (2)

whereK f is a positive semi-definite (PSD) matrix that specifies the inter-task similarities,kx

is a covariance function over inputs, andσ2
j is the noise variance for thejth task. The key

property of multi-task gaussian process model is the introduction of inter-task correlation
matrixK f , so that observations of one task can affect the predictionson another task. Infer-
ence in the MTGP model can be carried out by using the standardGP formulation for the
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predictive mean and variance. The predictive mean on a test point x∗ for task j is obtained
by

f j (x∗) = (k f
j ⊗ kx

∗)
TΣ−1y,whereΣ = K f ⊗Kx+D⊗ I (3)

where⊗ denotes the Kronecker product,k f
j is the jth column ofK f , kx

∗ represents the vector
consisting of covariances between the test pointx∗ and all the training points,Kx stands
for the covariance matrix obtained by computing covariances between all the training points
pairs,D is anM ×M diagonal matrix withσ2

j in the ( j, j)th position, andΣ is anMN×
MN matrix. In learning stage, given the observationsyo, we wish to optimize the hyper-
parameterslx of kx and matrixK f to marginal likelihoodp(yo|X, lx,K f ). [1] exploited the
Kronecker strcture of covariance matrix and proposed to usean expectation-maximization
(EM) algorithm to decouple the learning oflx andK f and optimize alternately. More details
about hyper-parameters optimization can be found in [1].

3 MTGP for Single Image Super Resolution

In this section, we will present our proposed MTGP-based super resolution (MTGPSR)
method in detail. First, we will show the MTGP can be exploited to solve the SR prob-
lem. Next, we give the algorithm details of MTGPSR.

3.1 How Super-resolution corresponds to MTGP

Example learning-based SR methods aim to recover the HR image by utilizing the external
database of LR-HR image pair. The core ingredient is to learnthe relationshipy= f (x), f
is the targeted LR-HR mapping function. Example learning-based SR methods are mostly
conducted patch-wise and algorithms consist of four steps which can be summarized as
feature extraction, patch clustering, LR-HR regression and result aggregation. Different SR
methods adopt different regression algorithms to learn themapping function between LR
patch feature and corresponding HR patch. In this subsection, we will illustrate that MTGP
can be used for inferring the missing HR details.

In gaussian process regression, for a test input one GPR model generates a scalar output,
however, targeted predictive HR image patch in SR requires the vector-value output. To
break this limitation and apply GRP to image SR, previous GPR-based image SR [7, 8]
simply utilizeM GPR models altogether to predict a HR patch (size of the patchis

√
M ×√

M), specifically, each GPR generates a pixel value and all these outputs form the desired
patch. But these GPR predictions are independent, so that itignores the correlation between
these outputs and make the super-resolved image bear some unnatural details.

From another viewpoint, each pixel value prediction by one gaussian process regression
can be regarded as one task, so that the whole patch prediction is a multi-task gaussian
process prediction problem. In the context of image SR, assumed the size of target patch is√

M×
√

M, we define independent zero mean GP prior over all the latent mapping functions
{ fi}M

i=1, one for each pixel prediction

〈 fi(x) f j (x
′)〉= K f

i j k
x(x,x′) (4)

With this prior, the GP prior over the observationsy j(·) is given by

〈y j(x)y j ′(x
′)〉= K j j ′k

x
j (x,x

′) (5)
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wherey j(·) is the observation off j . What’s more, this model also constrains that all the
mapping functions for a given cluster share the same covariance function. This completes
the correspondence with the multi-task GP model. Based on the above analysis, we can
apply MTGP to image super resolution.

Figure1 gives the flowchart of our proposed MTGPSR method. In the training stage, we
first construct HR/LR patch pairs by downsampling and then conduct K-means clustering
on LR patch dataset. For each cluster, we learn one MTGP modelto fit the training data.
In the predicting stage, given an LR image, we first overlap sample the image getting test
patch dataset and classify the data using the K-NN algorithmbased on the cluster centers
obtained from training stage. Next, each HR patch subspace corresponding to the LR patch
subspace are recovered through learned MTGP regression. Finally, all the predicted patches
are reconstructed into a HR image using average weighting scheme.

3.2 Proposed Algorithm

Based on the processing pipeline analyzed in the above subsection, if we haveC patch clus-
ters, then we learnC MTGP models, one for each cluster. Then learned MTGP model is
applied to the test LR patch to predict the targeted HR patch.Inference and hyper-parameter
learning can be done separately for each cluster. What’s more, the covariance function plays
the center role in the gaussian process and we adopt the squared exponential covariance
function

k(x,y) = exp

(

−‖x− y‖2

l2

)

(6)

wherel is the hyper-parameter that defines the characteristic length scale.
In learning stage, the MTGP hyper-parameters are optimizedas follows: Let f be the

vector of function values corresponding toy, and similarity forF for Y. Further, lety
. j

denote the vector(y1 j , ...,yN j)
T and similarly for f

. j . Given the missing data, which in this
case isf , the complete-data log-likelihood is

Lcomp=−N
2

log|K f |− M
2

log|Kx|− 1
2

tr
[

(K f )−1FT(Kx)−1F
]

− N
2

M

∑
j=1

logσ2
l

−1
2

tr[(Y−F)D−1(Y−F)T ]− MN
2

log2π

(7)

from which we have following updates:

l̂x = argmin
lx

(

Nlog|〈FT(Kx(lx))
−1F〉|+Mlog|Kx(lx)|

)

(8)

K̂ f = N−1〈FT(Kx(lx))
−1F〉 (9)

σ̂2
j = N−1〈(y

. j − f
. j)

T(y
. j − f

. j)〉 (10)

where the expectations〈·〉 are taken with respect top( f |yo, lx,K f ), and·̂ denotes the updated
parameters.

Assumed we have obtained the hyper-parameters of all theC MTGP models, in inference
stage, i.e. super-resolving the LR patch, the predictive HRpatch corresponding to the input
patch could be inferred according to equation. (3). The proposed MTGPSR algorithm is
summarized inAlgorithm 1.
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Algorithm 1 Multi-task Gaussian Process-based Single Image Super Resolution
Input:

training pairs{(xi ,yi)}Ntrain
i=1 , testing LR patch set{y j}Ntest

j=1
Output:

Estimated HR image.
1: ConductK-means on{xi}N

i=1 and get cluster centers{ck}K
k=1;

2: for i= 1 toC do
3: optimize hyper-parameters ofith MTGP model using equation. from (8) to (10);
4: end for
5: for j = 1 toNtest do
6: assign cluster labelc of jth patchy j usingk-nn;
7: predict the corresponding HR patch usingcth MTGP model according to equation.

(3);
8: end for
9: convert the estimated HR patch set to the HR image through average aggregation;

10: return Estimated HR image

4 Experiment

In this section, to validate the effectiveness of proposed MTGPSR, we compare our method
with following SR methods: bi-cubic interpolation and sparse coding-based SR [15](ScSR)
as baselines and three gaussian process regression-based methods: [5](GPR), [8](PGPR),
[7](SLGPR). ScSR and GPR are implemented using the original code provided by their
authors respectively. PGPR and SLGPR are implemented by ourself according to the exper-
iment description presented in the original paper. We evaluate the SR performance in terms
of peak-signal-noise-ratio(PSNR) and structural similarity(SSIM). The HR training images
are provided by [15]. The classicSet5 andSet14 datasets are used as the test images. The
parameters in our experiment are set as follows: the patch size is 3, the number of clusterC
is 500, total number of training pairs is 20000. Note that although increasing patch size can
improve the SR performance, but training time of MTGPSR willbe prohibitively long, so
we set it 3.

4.1 Analysis

Figure2 and3 show the representative SR results and figure4 gives the comparison results
of ×2 super-resolution on classic test images in terms of PSNR and SSIM. From the above
figures, we can see that MTGPSR achieves better performance on some images both in
PSNR and SSIM. Furthermore, for all the test images, we can see that though PSNRs of our
MTGPSR are lower than that of SLGPR [7], but are higher than other comparisons. On other
other hand, our MTGPSR outperforms all the related methods in terms of SSIM. It means
the recovered HR image by our approach can be more pleasant tohuman subjectiveness and
achieve the comparable numerical results. The above results prove the effectiveness of our
proposed MTGPSR framework and show that it can be more adaptive to image structures.

As for PSNRs of MTGPSR are lower than SLGPR, we try to empirically analyze the
result in terms of patch size. For patch-based SR methods, the patch size has a great in-
fluence on the final SR performance and proper patch size usually improves the result. In
our experiment, we set patch size 3 during the training and test stage. The reason we adopt
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(a) Bi-cubic:30.52,0.837 (b) ScSR:31.07,0.843 (c) GPR:30.63,0.885

(d) PGPR:32.19,0.893 (e) SLGPR:33.66,0.911 (f) Ours:34.29,0.914

Figure 2: Comparison of SR results (×2) onPepperimage. (a) Bi-cubic interpolation. (b)
ScSR method [15]. (c) GPR method [5]. (d) PGPR method [8]. (e) SLGPR method [7]. (f)
The proposed method. The two numbers below each figure are PSNR and SSIM respectively.

(a) Bi-cubic:28.57,0.883 (b) ScSR:30.25,0.901 (c) GPR:27.49,0.857

(d) PGPR:31.13,0.905 (e) SLGPR:31.59,0.919 (f) Ours:31.59,0.922

Figure 3: Comparison of SR results (×2) onflowersimage. (a) Bi-cubic interpolation. (b)
ScSR method [15]. (c) GPR method [5]. (d) PGPR method [8]. (e) SLGPR method [7]. (f)
The proposed method. The two numbers below each figure are PSNR and SSIM respectively.
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Figure 4: Comparison of×2 SR results onSet5 andSet14 datasets. (a) PSNR (b) SSIM

the patch of size as 3 rather than larger size like 7 or 9, whichis usually taken in the SR
experiment, is that we observe empirically bigger size patch even 7 would make the training
time prohibitively long (more than one week using CPU). Meanwhile, other comparative
methods adapt the patch as follows: ScSR:5, SLGPR: 7, LGPR:17. The former two are set
according to the original algorithm, however, patch size inthe LGPR is taken 17, not origi-
nal setting 5 because in our implementation, small size patch would make the recovered HR
image contain obviously unpleasant artifacts, so we increase the patch size gradually and
find 17 is appropriate. So, even if patch size of our proposed MTGPSR is smaller than all
the comparisons, as analyzed above, MTGPSR still achieves comparable PSNR and prevails
all the comparisons in terms of SSIM.

5 Conclusion

In this paper we propose a super resolution framework based on the multi-task gaussian pro-
cess regression and study how the models are optimized and inferred effectively. The pro-
posed MTGPSR framework makes the pixel prediction correlation into consideration based
on the image local structure. Experimental results show that the proposed algorithm achieves
the comparative performance and makes the super-resolved image more accurate and natu-
ral. In future work, we will focus on reducing training time of MTGP and apply it to other
image processing tasks, such as denoising and enhancement.
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