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Abstract

This paper presents a novel framework for image super résol(SR) based on
the multi-task gaussian process (MTGP) regression. Theidea is to treat each pixel
prediction using gaussian process regression as one sasggland cast recovering a high
resolution image patch as a multi-task learning problemcdntrast to prior gaussian
process regression-based SR approaches, our algorithiceinthe inter-task correlation
for considering image structures. We demonstrate the efiigi and effectiveness of the
proposed method by applying it to the classic image datamtteaperimental results
show our approach is competitive with even outperforms éheted and state-of-the-art
methods.

1 Introduction

Image super resolution (SR) aims at recovering the missigh fiequency details from
single image or multiple images. It has been studied oveadiexand many great methods
are proposed to improve the SR performance gradually. iBgiSR methods can be divided
into three categories: interpolation-based, reconstmidiased and example learning-based

Interpolation-based SR are usually implemented fast laytalso suffer from some blur-
ring and not being able to recover real detaiks J, 17].

Reconstruction-based SR, 11, 13, 16] assumed the LR image is generated from HR
image through blurring, down-sampling and noising. Bageth assumption, one pixel in
LR image corresponds to multiple pixels in HR image, so tiaissan ill-posed problem. To
alleviate the ill-posedness, various natural images faierproposed and incorporated into
the MAP optimization framework. However, its recovery pemance drops badly when
upscale factor is large.

Example learning-based SR methods utilize the LR-HR imaaetp infer the miss-
ing high-frequency details in the LR image and achieve st&the-art performance. 4]
first proposed to infer the HR image patch based externalit@iLR/HR pairs and used
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the Markov Random Fields (MRF) to model the relationshipsveen HR and LR patch-
es, as well as between neighboring HR patchekd] froposed to learn the HR/LR patch
dictionary simultaneously with assumption that the spaegeesentation of LR patch and
corresponding HR patch are the same with respect to the LRIEtRnary. With the help of
external dataset, example learning-based SR could recower details than interpolation-
and reconstruction-based methods, especially when zapfaator is large. The most sig-
nificant step in example learning-based SR is to learn tlagioelship between LR-HR image
explicitly or implicitly using the known LR-HR image pair$hese image pairs may be con-
structed from the image internal structures or externgHalatabase. Recently, in the field of
example learning-based SR, more and more researcherstekearn the LR-HR relation-
ship directly, i.ey = f(x), wherexis the input LR image featurg,is the targeted HR image
and f is the mapping function that transforms the LR feature in® ikhage. To achieve
the satisfactory SR result, we should find the unique propgypimg function for each test
patch, however, this data-driven method undertakes higipatational complexity 7, 8].

To alleviate the computation burden, many methods condustezing on training dataset
and assume that patches in the same cluster share the sapiagrfapction [L4, 17]. In test
stage, each LR patch first finds the most closest cluster andutes the corresponding map-
ping function to recover the HR patch. This strategy redticesomputational complexity
largely. [L4] assumef is linear mapping, namely,= Fx, whereF is the regression matrix.
[14] made use of large scale patch pair2(@illion) and cluster them into 4096 clusters. For
each cluster, the desirédis computed by simple least square regression. Thoughig
simple to implement and takes short test time, it dependsliiea great number of training
pairs and large number of cluster. There still exist somstehs lacking of enough training
data, making the recovered HR image contain unsatisfadieiajls.

Instead of commonly used parametric models, non-paracmagihods ¢, 9], especially
gaussian process regression (GPR)-related methgdsd] begin to emerge in the SR field.
He and Siu §] firstly proposed to apply GPR to SR problem and predicteccthger pixel
using its eight neighbor pixels through GPR without any exdédatabase. Unfortunately, it
suffers from long processing time and performance remaifietimproved when zooming
factor is over 3. Liet al. [8] proposed to learn multiple local GPR for mapping LR feature
to HR image patch with the help of external database. Two austhdata-driven gaussian
process regression (DDGPR) and prototype-based gaussiaess regression (PGPR) are
proposed. DDGPR attempted to learn specific GPR model fdr est image patch. DDG-
PR first found nearest neighbors for each LR test patch arditheespecial LR-HR pairs to
train GPR for this patch. Though achieved the promisinggreréince, it took a long time to
super-resolve an image. Instead of learning unique GPRafdr test patch, PGPR assumed
if two patches are similar, they share the same mappingitmao PGPR conducted clus-
tering on training dataset and learnt GPR for each clustés Method reduced the training
time largely compared to DDGPR, however, at the cost of perémce decreasing. Though
some GPR-based SR methods are proposed, main obstaclgficatipn to SR is its high
computational complexity. To overcome the high computetia@ost, [] proposed a semi-
local GPR (SLGPR) framework for learn-based image enhaapéeand applied it to SR.
SLGPR improved the sparse GP through inducing nearest Ingiglas specific inducing
inputs for the given test input and this reduced the traitimge and made it possible for
large-scale GPR.

As for GPR, since it predicts a scalar value based on the wdisens, it is common to
learn multiple GPR models together to predict an image pathkbre each GPR corresponds
to a pixel prediction. However, previous GPR-based SR nuktlsamply learn all the GPR
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Figure 1: Flowchart of proposed Multi-task Gaussian Pre@&sgper Resolution.

models independently and ignore the correlation betweemthOn the other hand, each
pixel prediction can be treated as a task, so that inferririiRgpatch can be regarded as a
multi-task problem. To model the correlation between GP& miake the predictive patch
more accurate and natural, we propose a multi-task gaugsieess framework for image
super resolution (MTGPSR). To the best of our knowledges the first time to apply the
MTGP to the image super resolution problem. The key ingredié MTGPSR is to take
pixel prediction correlation into consideration and indurater-task similarity to model this
correlation, so that MTGPSR can be adaptive to image looattstres.

The remainder of this paper is organized as follows: we gikeief overview of multi-
task gaussian process prediction proposedlinin[Section 2; Analysis of how SR problem
corresponds to MTGP and details of proposed algorithm asegmted in Section 3; Experi-
mental validation and comparisons are provided in Sectj@edtion 5 concludes the whole
paper.

2 Multi-Task Gaussian Process

In this section, we give a brief introduction to multi-taskugsian process prediction model
described in J]. MTGP tries to solve the following problem: Givead distinct inputs
X1, ...,Xn We define the complete set of responsedMdBsks ay = (Y11, .-, YN1, -+, Y12, .-

LYN2, -, YIM, -, Yam) T, whereyij is the response for thg" task on theé'" inputx.. We also
denote theN x M matrix Y such thaty = vecy. Given a set of observations, which is a
subset ofy, we wish to predict the unobserved valuesygfof some input points for some
tasks. MTGP wishes to leaM related latent function§f, } by placing a GP prior ovefff| }
and directly induce correlations between tasks. Assuntiagthe GPs have zero mean we
define

(RO (X)) = Kk (%,X) (1)

yij~N(fi (%), 07) 2)

whereK f is a positive semi-definitddSD) matrix that specifies the inter-task similariti&s,

is a covariance function over inputs, aaﬁ is the noise variance for thg" task. The key
property of multi-task gaussian process model is the inictidn of inter-task correlation
matrixKf, so that observations of one task can affect the predictarenother task. Infer-
ence in the MTGP model can be carried out by using the star@Rrébrmulation for the
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predictive mean and variance. The predictive mean on a tastx. for task j is obtained
by
fj(x) = (k )Tz lywhere =K' 9 K*+ D@ | (3)

where® denotes the Kronecker produkf, is the j!" column ofK ', kX represents the vector
consisting of covariances between the test pginand all the training pointsk* stands
for the covariance matrix obtained by computing covariarimtween all the training points
pairs,D is anM x M diagonal matrix WithO'J?‘ in the (j, j)™" position, andz is anMN x
MN matrix. In learning stage, given the observatiggswe wish to optimize the hyper-
parameters, of K and matrixk f to marginal likelihoodp(yo|X, Ix,K ). [1] exploited the
Kronecker strcture of covariance matrix and proposed toamsexpectation-maximization
(EM) algorithm to decouple the learning lgfandK  and optimize alternately. More details
about hyper-parameters optimization can be foundlin [

3 MTGP for Single Image Super Resolution

In this section, we will present our proposed MTGP-basedsupsolution (MTGPSR)
method in detail. First, we will show the MTGP can be expldite solve the SR prob-
lem. Next, we give the algorithm details of MTGPSR.

3.1 How Super-resolution correspondsto MTGP

Example learning-based SR methods aim to recover the HRebgatilizing the external
database of LR-HR image pair. The core ingredient is to I#zemrelationshify = f(x), f

is the targeted LR-HR mapping function. Example learniagdnl SR methods are mostly
conducted patch-wise and algorithms consist of four stelpgtwcan be summarized as
feature extraction, patch clustering, LR-HR regressiahrasult aggregation. Different SR
methods adopt different regression algorithms to learmthpping function between LR
patch feature and corresponding HR patch. In this subseatie will illustrate that MTGP
can be used for inferring the missing HR details.

In gaussian process regression, for a test input one GPRIg@dlerates a scalar output,
however, targeted predictive HR image patch in SR requivesvector-value output. To
break this limitation and apply GRP to image SR, previous @@Bed image SR/[ 8]
simply utilizeM GPR models altogether to predict a HR patch (size of the pgat¢iM x
VM), specifically, each GPR generates a pixel value and aletbatputs form the desired
patch. But these GPR predictions are independent, so tigabites the correlation between
these outputs and make the super-resolved image bear soratital details.

From another viewpoint, each pixel value prediction by oaesgian process regression
can be regarded as one task, so that the whole patch predist® multi-task gaussian
process prediction problem. In the context of image SR,rasslthe size of target patch is
VM x /M, we define independent zero mean GP prior over all the latapping functions
{fi}M,, one for each pixel prediction

(fi(x)fj(X)) = KK (x.x) @
With this prior, the GP prior over the observation$ ) is given by
(yi(X¥)yj (X)) = Kjjrk(x,x) (5)
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wherey;(-) is the observation of;. What's more, this model also constrains that all the
mapping functions for a given cluster share the same cawegifunction. This completes
the correspondence with the multi-task GP model. Based eraliove analysis, we can
apply MTGP to image super resolution.

Figurel gives the flowchart of our proposed MTGPSR method. In theitngistage, we
first construct HR/LR patch pairs by downsampling and themdoot K-means clustering
on LR patch dataset. For each cluster, we learn one MTGP ntodi¢lthe training data.
In the predicting stage, given an LR image, we first overlapma the image getting test
patch dataset and classify the data using the K-NN algorlihsed on the cluster centers
obtained from training stage. Next, each HR patch subspatesponding to the LR patch
subspace are recovered through learned MTGP regressiailyf-all the predicted patches
are reconstructed into a HR image using average weightimgnse.

3.2 Proposed Algorithm

Based on the processing pipeline analyzed in the above &igrsdf we haveC patch clus-

ters, then we lear@ MTGP models, one for each cluster. Then learned MTGP model
applied to the test LR patch to predict the targeted HR pdidarence and hyper-parameter
learning can be done separately for each cluster. What's ntfue covariance function plays
the center role in the gaussian process and we adopt theeshj@aponential covariance

function 5
X_
ey =exp( - ) ©)

wherel is the hyper-parameter that defines the characteristi¢Hesogle.

In learning stage, the MTGP hyper-parameters are optimazeidllows: Letf be the
vector of function values corresponding ypand similarity forF for Y. Further, lety ;
denote the vectofysj,...,ynj)" and similarly forf ;. Given the missing data, which in this
case isf, the complete-data log-likelihood is

Lcomp= 7§I09|Kf| f%log|Kx| - %tr[(K YIET (K™ Zlogq
)
f%tr[(Y —F)DYY-F)T] - M7|ogzn
from which we have following updates:
= argnI]in(NIog|<FT(KX(IX))*1F)| +Mlog|K¥(1)|) (8)
KT =N"HFT(KX(1x)*F) )
6f =N"H(y—f)T (v — ) (10)

where the expectatior{s) are taken with respect {o( f |yo, Ix, K"), and-denotes the updated
parameters.

Assumed we have obtained the hyper-parameters of all M&@GP models, in inference
stage, i.e. super-resolving the LR patch, the predictivegd®h corresponding to the input
patch could be inferred according to equatiof). (The proposed MTGPSR algorithm is
summarized irAlgorithm 1.
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Algorithm 1 Multi-task Gaussian Process-based Single Image Supeiugieso
Input:
training pairs{(x;, i) }¥3", testing LR patch sefy; } M5
Output:
Estimated HR image.
: Conductk-means or{x }N; and get cluster centefs,}\_,;
: fori=1toCdo
optimize hyper-parameters ith MTGP model using equation. frorg)(to (10);
end for
for j = 1 toNest do
assign cluster label of jth patchy; usingk-nn;
predict the corresponding HR patch usicth MTGP model according to equation.
(©F
. end for
9: convert the estimated HR patch set to the HR image througlageeggregation;
10: return Estimated HR image

NoaAreDdNRE

[ee]

4 Experiment

In this section, to validate the effectiveness of propos@daASR, we compare our method
with following SR methods: bi-cubic interpolation and sgacoding-based SRJ|(ScSR)
as baselines and three gaussian process regression-betsedisn pj(GPR), BI(PGPR),
[71(SLGPR). ScSR and GPR are implemented using the origindé¢ goovided by their
authors respectively. PGPR and SLGPR are implemented Isglbaccording to the exper-
iment description presented in the original paper. We atelthe SR performance in terms
of peak-signal-noise-ratio(PSNR) and structural sintifg8SIM). The HR training images
are provided by 19). The classicSet5 andSet14 datasets are used as the test images. The
parameters in our experiment are set as follows: the patehisi3, the number of clustér

is 500, total number of training pairs is 20000. Note thdi@ligh increasing patch size can
improve the SR performance, but training time of MTGPSR Wél prohibitively long, so
we set it 3.

4.1 Analysis

Figure2 and3 show the representative SR results and figugéves the comparison results
of x2 super-resolution on classic test images in terms of PSNRS&IM. From the above
figures, we can see that MTGPSR achieves better performanseroe images both in
PSNR and SSIM. Furthermore, for all the test images, we cathst though PSNRs of our
MTGPSR are lower than that of SLGPR [but are higher than other comparisons. On other
other hand, our MTGPSR outperforms all the related methodsrms of SSIM. It means
the recovered HR image by our approach can be more pleadamttan subjectiveness and
achieve the comparable numerical results. The above sgadve the effectiveness of our
proposed MTGPSR framework and show that it can be more agdptimage structures.
As for PSNRs of MTGPSR are lower than SLGPR, we try to emgisicnalyze the
result in terms of patch size. For patch-based SR methodsdtch size has a great in-
fluence on the final SR performance and proper patch sizelysomgdroves the result. In
our experiment, we set patch size 3 during the training astdstage. The reason we adopt



(d) PGPR:3219,0.893 (e) SLGPR:38%6,0.911 (f) Ours34.29,0.914
Figure 2: Comparison of SR resultg?) on Pepperimage. (a) Bi-cubic interpolation. (b)
ScSR methodl[g. (c) GPR methodq]. (d) PGPR methodq]. (e) SLGPR method{]. (f)

The proposed method. The two numbers below each figure arRRBHISSIM respectively.
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(d) PGPR:3113,0.905 () SLGPR31.59,0.919 (f) Ours31.59,0.922

Figure 3: Comparison of SR resultg Z) onflowersimage. (a) Bi-cubic interpolation. (b)
ScSR methodl[g. (c) GPR methodq]. (d) PGPR methodq]. (e) SLGPR method{]. (f)
The proposed method. The two numbers below each figure arR RBHISSIM respectively.



=
-

m Bicubic m Bicubic

W ScSR(15) W ScSR(15]

PSNR(dB)

NN
8
SsIM

uGPR[S]
mPGPR[8]
uSLGPR[7]

uGPR[5]
uPGPR(8]
uSLGPR[7]

™ Proposed ™ Proposed

e@“
&£ &

% s s s e s s e —)
%
>
2
————————-‘
o

s s s s s s s s
P B

(b)

Figure 4: Comparison ok2 SR results otset5 andSet14 datasets. (a) PSNR (b) SSIM

the patch of size as 3 rather than larger size like 7 or 9, wisialsually taken in the SR

experiment, is that we observe empirically bigger sizelpaten 7 would make the training
time prohibitively long (more than one week using CPU). Mghite, other comparative

methods adapt the patch as follows: ScSR:5, SLGPR: 7, LGPR!ie former two are set

according to the original algorithm, however, patch sizéhinLGPR is taken 17, not origi-

nal setting 5 because in our implementation, small sizehpatwld make the recovered HR
image contain obviously unpleasant artifacts, so we irsere¢he patch size gradually and
find 17 is appropriate. So, even if patch size of our proposg@®MSR is smaller than all

the comparisons, as analyzed above, MTGPSR still achi@raparable PSNR and prevails
all the comparisons in terms of SSIM.

5 Conclusion

In this paper we propose a super resolution framework bas#ueomulti-task gaussian pro-
cess regression and study how the models are optimized &erdeid effectively. The pro-
posed MTGPSR framework makes the pixel prediction coiimahto consideration based
on the image local structure. Experimental results showtltegproposed algorithm achieves
the comparative performance and makes the super-resohagkimore accurate and natu-
ral. In future work, we will focus on reducing training timé TGP and apply it to other
image processing tasks, such as denoising and enhancement.
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