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Abstract

We have implemented a convolutional neural network designed for processing sparse
three-dimensional input data. The world we live in is three dimensional so there are a
large number of potential applications including 3D object recognition and analysis of
space-time objects. In the quest for efficiency, we experiment with CNNs on the 2D
triangular-lattice and 3D tetrahedral-lattice.

1 Convolutional neural networks
Convolutional neural networks (CNNs) are powerful tools for understanding data with spatial
structure such as photos. They are most commonly used in two dimensions, but they can also
be applied more generally. One-dimensional CNNs are used for processing time-series such
as human speech [9]. Three dimensional CNNs have been used to analyze movement in 2+1
dimensional space-time[5, 6] and for helping drones find a safe place to land [12]. Three
dimensional convolutional deep belief networks have been used to recognize objects in 2.5D
depth maps [15].

In [3], a sparse two-dimensional CNN is implemented to perform Chinese handwriting
recognition. When a handwritten character is rendered at moderately high resolution on a
two dimensional grid, it looks like a sparse matrix. If we only calculate the hidden units of
the CNN that can actually see some part of the input field the pen has visited, the workload
decreases. We have extended this idea to implement sparse 3D CNNs 1. Moving from two
to three dimensions, the curse of dimensionality becomes relevant—an N×N×N cubic grid
contains many more points than an N×N square grid. However, the curse can also be taken
to mean that the higher the dimension, the more likely interesting input data is to be sparse.

To motivate the idea of a sparse 3D CNN, imagine you have a loop of string with a
knot in it. Mathematically, detecting and classifying knots is a hard problem; a piece of
string can be very tangled without actually being knotted. Suppose you are only interested in
‘typical’ knots—humans can quite easily learn to spot the difference between, say, a trefoil
knot and a figure of eight knot. If you want to take humans out of the loop, then you could
train a 2D CNN to recognize and classify pictures of knots. However, pictures taken from
certain angles will not contain enough information to classify the knot due to parts of the
string being obscured. Suppose instead that you can trace the path of the string through
three dimensional space; you could then use a 3D CNN to classify the knot. The string is
essentially one dimensional, so the parts of space that the string visits will be sparse.
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1Software for creating sparse 2, 3 and 4 dimensional CNNs is available at https://github.com/
btgraham/SparseConvNet Pages 150.1-150.9
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Figure 1: Left to right: A trefoil knot has been drawn in the cubic lattice; these are the input
layer’s active sites. Applying a 2× 2× 2 convolution, the number of active (i.e. non-zero)
sites increases. Applying a 2× 2× 2 pooling operation reduces the scale, which tends to
decrease the number of active sites.

The example of the string is just a thought experiment. However, there are many real-
world problems, in domains such as robotics and biochemistry, where understanding 3D
structure is important and where sparsity is applicable.

1.1 Adding a dimension to 2D CNNs?
Recently there has been an explosion of research into conventional two-dimensional CNNs.
This has gone hand-in-hand with a substantial increase in available computing power thanks
to GPU computing. For photographs of size 224× 224, evaluating model C of [4]’s 19
convolutional layers requires 53 billion multiply-accumulate operations.

Although model C’s input is represented as a 3D array of size 224× 224× 3, it is still
fundamentally 2D—we can think of it as a 2D array of vectors, with each vector storing an
RGB-color value. Model C’s initial convolutional layer consists of 96 convolutional filters
of size 7×7, applied with stride 2. Each filter is therefore applied (224/2)2 times.

This makes 3D CNNs sound like a terrible idea. Consider adapting model C’s network
architecture to accept 3D input with size 224× 224× 224× 3, i.e. some kind of 3D model
where each points has a color. To apply a 7×7×7 convolutional filter with the same stride,
we would need to apply it 112 more times than in the 2D case, with each application requiring
7 times as many operations. Extending the whole of model C to 3D would increase the
computational complexity to 6.1 trillion operations. Clearly if we want to use 3D CNNs,
then we need to do some things differently.

Applying the convolutions in Fourier space [11], or using separable filters [13] could
help, but simply the amount of memory needed to store large 3D grids of vectors would
still be a problem. Instead we try two things that work well together. Firstly we use much
smaller filters, using network architectures similar to the ones introduced in [1]. The smallest
non-trivial filter possible on a cubic lattice has size 2× 2× 2, covering 23 = 8 input sites.
In an attempt to improve efficiency, we will also consider the tetrahedral lattice, where the
smallest filter is a tetrahedron of size 2 which covers just 4 input sites. Secondly, we will
only consider problems where the input is sparse. This saves us from having to have the
convolutional filters visit each spatial location. If the interesting part of the input is a 1D
curve or a 2D surface, then the majority of the 3D input field will receive only zero-vectors
for inputs. Sparse CNNs are more efficient when used with smaller filters, as the hidden
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(i) (ii) (iii) (iv)

Figure 2: Convolutional filter shapes for different lattices: (i) A 4×4 square grid with a 2×2
convolutional filter. (ii) A triangular grid with size 4, and a triangular filter with size 2. (iii)
A 3×3×3 cubic grid, and a 2×2×2 filter. (iv) A tetrahedral grid with size 3, and a filter
of size 2.

layers tend to be sparser.

1.2 CNNs on different lattices
Each layer of a CNN consists of a finite graph, with a vector of input/hidden units at each site.
For regular two dimensional CNNs, the graphs are square grids. The convolutional filters are
square-shaped too, and they move over the underlying graph with two degrees of freedom;
see Figure 2 (i). Similarly, 3D CNNs are normally defined on cubic grids. The convolutional
filters are cube-shaped, and they move with three degrees of freedom; see Figure 2 (iii).

In principle we could also build 4D CNNs on hypercubic grids, and so on. However, as
the dimension d = 2,3,4, ... increases, the size 2d of the smallest non-trivial filter is growing
exponentially. In the interests of efficiency, we will also consider CNNs with a different
family of underlying graphs. In 2D, we can build CNNs based on triangles. For each layer,
the underlying graph is a triangular grid, and the convolutional filters are triangular, moving
with two degree of freedom; see Figure 3 (ii). In 3D, we can use a tetrahedral grid and
tetrahedral filters that move with three degrees of freedom; see Figure 3 (iv). We could
extend this to 4D with hypertetrahedrons, etc. In d dimensions, the smallest convolutional
filters contain only d +1 sites, rather than exponentially many.

To describe CNN architecture on these different lattices, we will still use the common
“nC f/s-MPp/s-...” notation. The n counts the number of convolutional filters, f measures
the linear size of the filters—the number of input sites the convolutional filter covers is f 2,
f 3,

( f+1
2

)
,
( f+2

3

)
on the square, cubic, triangular and tetrahedral lattices, respectively—and

s denotes the stride. The p measures the linear size of the max-pooling regions. The /s is
omitted when s = 1 for convolutions or s = p for pooling. For example, on the tetrahedral
lattice 32C2−MP3/2 means 32 filters of size 2 which cover

(2+2
3

)
= 4 input sites, followed

by max pooling with pooling regions of size
(3+2

3

)
= 10, and with adjacent pooling regions

overlapping by one.

1.3 Sparse operations
Sparse CNNs can be thought of as an extension of the idea of sparse matrices. If a large
matrix only has small number of non-zero entries per row and per column, then it makes
sense to use a special data structure to store the non-zero entries and their locations; this
can both dramatically reduce memory requirements and speed up operations such as matrix
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Figure 3: Calculating a 2×2 convolution for a sparse CNN: On the left is a 6×6 square grid
with 3 active sites. The convolutional filter needs to be calculated at each location that covers
at least on active site; this corresponds to the shaded region. The figure on the right marks
the location of the eight active sites in the 5× 5 output layer. Sparsity decreases with each
convolution and pooling operation. However, a CNN spends most of its time processing the
lower layers, so sparsity can still be useful.

multiplication. However, if 10% of the entries are non-zero, then the advantages of sparsity
may be outweighed by the efficiency which which dense matrix multiplication can be carried
out, either using Strassen’s algorithm, or optimized GPU kernels.

The sparse CNN algorithm from [3] can be tweaked to work efficiently on general lat-
tices. The spatial size of each of the CNN’s data layers is described by a lattice-type graph
(similar to the ones in Figure 2). At each spatial location in the grid, there is a dimension-
less vector of input or hidden units. Depending on the input, some of the spatial locations
will be defined to be active.

• A spatial location in the input layer graph is declared active if the location’s vector is
not the zero vector.

• Declare that a spatial location in a hidden layer is active if any of the spatial location
in the layer below from which it receives input are active.

See Figure 3 for a 2D example of a sparse convolution, and see Figure 1 for a 3D example.
By induction, the dimension-less vectors at each non-active spatial location in the n-th

hidden layer are all the same; the shared value of the vectors can be pre-computed. We will
call this the ground state vector for the n-th level. The ground state for the input layer is just
the zero vector.

We will now describe the implementation of the sparse convolution for the types of
graphs shown in Figure 2. For simplicity, we will focus on case (i), the 2D square grid;
the other cases are very similar.

Suppose that an image has input field size min×min, and that the number of active spatial
locations is ain ∈ {0,1, . . . ,m2

in}. Suppose an f × f convolutional filter will act on the image,
and let nin and nout denote the number of input and output features per spatial location. The
input to the first convolutional operation consists of:

• A matrix Min with size ain× nin. Each row corresponds to the vector at one of the
active spatial locations.

• A map or hash table Hin of (key,value) pairs. The keys are the active spatial locations.
The values record the number of the corresponding row in Min.

• The input layer’s ground state vector gin.
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• An ( f 2nin)×nout matrix W containing the weights that define the convolution.

• A vector B of length nout specifying the values of the bias units.

To calculate the output of the first hidden layer:

1. Iterate through Hin and determine the number aout of active spatial locations in the
output layer. A site in the output layer is active if any of the input sites are active.
Build a hash table Hout to uniquely identify each of the active output spatial locations
with one of the integers 1,2, . . .aout.

2. Use Hin, Min and gin to build a matrix Q of size aout× ( f 2nin); each row of Q should
correspond to the inputs visible to the convolutional filter at the corresponding output
spatial location.

3. Calculate Mout = Q×W +B.

We implemented step 1 on the CPU and steps 2 and 3 on the GPU. If W is small, the com-
putational bottleneck will be I/O-related, steps 1 and 2. If W is large, the bottleneck will be
performing the dense matrix multiplication in step 3 to calculate Mout.

The procedure for max-pooling is similar. Max-pooling is always I/O-bound.

2 Experiments
We have performed experiments to test triangular and sparse 3D CNNs. Unlike the 2D case,
there are not yet any standard benchmarks for evaluating 3D CNNs, so we just picked a
range of different types of data. When faced with a trade-off between computational cost
and accuracy, we have preferred to train smaller network to see what can be achieved on a
limited computational budget, rather than trying to maximize performance at any cost.

For some of the experiments we used n-fold repetitive testing: we processed each test
case n times, with some form of data augmentation, for n a small integer, and averaged the
output.

2.1 Square versus triangular 2D convolutions
As a sanity test regarding our unusually shaped CNNs, we first did a 2D experiment with
the CIFAR-10 dataset of small pictures [8] to compare CNNs on the square and triangular
lattices. We will call the networks SquareNet and TriangLeNet, respectively. Both networks
have 12 small convolutional layers split into pairs by 5 layers of max-pooling, and with the
n-th pair of convolutional filters each having 32n output features:

32C2−32C2−MP3/2−·· ·−MP3/2−192C2−192C2−output

We extended the training data using affine transformations. For the triangular lattice, we
converted the images to triangular coordinates using an additional affine transformation. See
Table 1 for the results.

TriangLeNet has a computational cost that is 26% lower than the more conventional
SquareNet. In terms of test errors, there does not seem to be any real difference between the
two networks.
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CNN MegaOps test error 12-fold test error
SquareNet 41 9.24% 7.66%

TriangLeNet 30 9.70% 7.50%
Table 1: Comparison between square and triangular 2D CNNs for CIFAR-10

Figure 4: Items from the 3D object dataset used in Section 2.2, embedded into a 40×40×40
cubic grid. Top row: four items from the snake class. Bottom row: an ant, an elephant, a
robot and a tortoise.

2.2 Object recognition
To test the 3D CNN, we used a dataset of 3D objects2, each stored as a mesh of triangles in
the OFF-file format. The dataset contains 1200 exemplars split evenly between 50 classes
(aliens, ants, armadillo, ...). The dataset was intended to be used for unsupervised learning,
but as CNNs are most often used for supervised learning, we used 6-fold cross-validation to
measure the ability of our 3D CNNs to learn shapes. To stop the dataset being too easy, we
randomly rotated the objects during training and testing. This is to force the CNN to truly
learn to recognize shape, and not rely on some classes of objects tending to have a certain
orientation.

All the CNNs we tested took the form

32C2−pooling−64C2−pooling−96C2− ...−output.

We rendered the 3D models at a variety of different scales, and varied the number of levels of
pooling accordingly. We tried using MP3/2 pooling on the cubic and tetrahedral lattices. We
also tried a stochastic form of max-pooling on the cubic lattice which we denote FMP[2];
we used FMP to downsample the hidden layer by a factor of 22/3 ≈ 1.59; this allows us to
gently increase the number of learnt layers for a given input scale. See Figure 5.

The tetrahedral CNNs are substantially cheaper computationally, but less accurate at the
smallest scale. The FMP pooling provides the highest accuracy when the scale is small, but
they are quite a bit more expensive. If we look at the number of test samples that can be
processed per second, we see that for such small CNNs the calculations are actually I/O-
bound, so tetrahedral network is not as much faster as we might have expected based on the

2SHREC2015 Non-rigid 3D Shape Retrieval dataset http://www.icst.pku.edu.cn/zlian/
shrec15-non-rigid/data.html
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scale pooling ×106 operations tests/s
20 4×MP3/24 9 1133
40 5×MP3/24 35 675
80 6×MP3/24 143 286
20 4×MP3/2 � 36 1190
40 5×MP3/2 � 126 794
80 6×MP3/2 � 406 310
20 6×FMP� 116 1100
32 7×FMP� 279 849
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Figure 5: 6-fold cross-validation error rate for 3D object recognition for different CNN
architectures. The lines in the graph correspond to performing 1-, 2- and 3-fold testing
with a given CNN. The table given the computational complexity and speed of the network
on a Nvidia GeForce GTX 780 GPU.

computational cost. However, with a less powerful processor, it is likely that there would be
a speed advantage to the tetrahedral lattice.

2.3 2D space + 1D time = 3D space-time

The CASIA-OLHWDB1.1 database contains online handwriting samples of the 3755 GBK
level-1 Chinese characters [10]. There are approximately 240 training characters, and 60 test
characters, per class. Online means that the pen strokes were recorded in the order they were
made.

A test error of 5.61% is achieved by drawing the characters with size 40×40 and learning
to recognize their pictures with a 2D CNN [1]. Evaluating that network’s four convolutional
layers requires 72 million multiply-accumulate operations.

With a 3D CNN, we can use the order in which the strokes were written to represent each
character as a collection of paths in 2+1 dimensional space-time with size 40× 40× 40. A
3D CNN with architecture

32C3−MP3/2−64C2−MP3/2−128C2−MP3/2−256C2−MP3/2−512C3−output

requires on average 118 million operations to evaluate, and produced a test error of 4.93%.
We deliberately kept the input spatial size the same, so any improvements would be due to
the introduction of the time dimension.

2.4 Human action recognition

Recognizing actions in videos is another example of a 2+1 dimensional space-time problem.
A simple way of turning a video into a sparse 3D object is to take the difference between suc-
cessive frames, and then setting to zero any values with absolute value below some threshold.
We tried this approach on two datasets, the simpler RHA dataset3 [14] with 6 classes of ac-
tions, and the harder UCF101 [7] dataset. We scaled the UCF101 video down by 50% to

3http://www.nada.kth.se/cvap/actions/
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Figure 6: An image from the two video datasets used in Section 2.4, and the difference
between that frame and the previous frame.

have the same size as the HRA videos, 160×120. In both cases we used a cubic CNN:

32C2−MP3/2−64C2−MP3/2−·· ·−192C2−MP3/2−224C2−output.

For RHA, (mean) accuracy of 71.7% is reported in [14]. We used a threshold of 12%, which
resulted in 1.7% of input pixels being active. Our approach yielded 88.0% accuracy with a
computational cost of 1.1 billion operations per test case.

For UCF101, accuracy of 43.90% is reported in [7]. We used a threshold of 13%, which
resulted in 3.1% of input pixels being active. The computational cost was higher than for
RHA, 2.7 billion operatons, as the videos are more complicated. Single testing produced an
accuracy of 60.4%, rising to 67.8% with 12-fold testing.

These results are not state of the art. However, they do seem to strike a good balance in
terms of computational cost. Also, we have not done any work to try to optimize our results.
There are different ways of encoding a video’s ‘optical flow’ that we have not had a chance
to explore yet.

3 Conclusion
We have shown that sparse 3D CNNs can be implemented efficiently, and produce interesting
results for a variety of types of 3D data. There are potential applications that we have not yet
tried. In biochemisty, there are large databases of 3D molecular structure. Proteins that are
encoded differently may fold to produce similar shapes with similar functions. In robotics,
it is natural to build 3D models by combining one or more 2D images with depth detector
databases. Sparse 3D CNNs could be used to analyse these models.
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